期刊文献+

基于NMS及帧间差分的深度学习目标识别实验仿真 被引量:1

Experimental simulation of deep learning target recognition based on NMS and inter-frame difference method
下载PDF
导出
摘要 目标识别实验是数字图像处理实验的一个创新性实验项目,学生选课率较高。传统的目标识别算法不能识别目标的位置信息,而且识别率较低。在深度学习理论构架下,设计了基于NMS及帧间差分的目标识别实验仿真算法,将帧间差分法融入识别过程,采用帧间差分法提取待识别视频的动态信息作为补充,增强候选框区域分割图像,并通过NMS算法对候选框进行筛选,提高识别率。仿真结果表明,算法识别出目标种类的同时能对目标在图像中的位置进行精确标定,并可以判断目标是否处于运动中,具有较高的识别率。 Target recognition experiment is an innovative experimental project of digital image processing experiment,and the rate of students choosing courses is high.The traditional target recognition algorithm can not recognize the target position information,and the recognition rate is low.Under the deep learning theory framework,design the target recognition based on the NMS and inter-frame difference experiment simulation algorithm,the inter-frame difference method into the identification process,using inter-frame difference method to extract the dynamic information to identify the video as a supplement,enhance the region proposal segmentation image,and through the NMS algorithm to filter region proposal,improve the recognition rate.Simulation results show that the algorithm can accurately calibrate the position of the target in the image and judge whether the target is in motion while recognizing the type of target,and has a high recognition rate.
作者 王辉 于立君 刘朝达 高天禹 WANG Hui;YU Lijun;LIU Chaoda;GAO Tianyu(College of Automation,Harbin Engineering University,Harbin 150001,China)
出处 《实验室科学》 2021年第1期52-56,共5页 Laboratory Science
基金 黑龙江省教改项目(项目编号:SJGY20180090 SJGY20180089) 哈尔滨工程大学教改项目(项目编号:JG2018Y06) 哈尔滨工程大学研究生教改项目(项目编号:JG2019Y09)。
关键词 目标识别 创新性实验 深度学习 非极大值抑制 target recognition innovative experiment deep learning NMS
  • 相关文献

参考文献8

二级参考文献49

  • 1陈俊超,张俊豪,刘诗佳,陆小锋.基于背景建模与帧间差分的目标检测改进算法[J].计算机工程,2011,37(S1):171-173. 被引量:23
  • 2张婵,高新波,姬红兵.视频关键帧提取的可能性C-模式聚类算法[J].计算机辅助设计与图形学学报,2005,17(9):2040-2045. 被引量:21
  • 3Piccardi M. Background subtraction techniques: a review[C]//IEEE International Conference on Sys- tems, Man and Cybemeties, Sydney, Australia, 2004 :3099-3104. 被引量:1
  • 4Tsai D M, Lai S C. Independent component analy: sis-based background subtraction for indoor surveil- lanc([J].IEEE Transactions on Image Processing, 2009, 18(1) : 158-160. 被引量:1
  • 5Zhang Jie-yu, Barron J L. Optical flow at occlusion[C]//The Ninth Conference on Computer and Robot Vision, Toronto, Canada, 2012: 198-205. 被引量:1
  • 6Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [C]//IEEE Computer Vision and Pattern Recognition,Fort Col- lins, USA, 1999: 246-250. 被引量:1
  • 7Zhang J, Chen C H. Moving objects detection and segmentation in dynamic video backgrounds [C]// IEEE Conference on Technologies for Homeland Se-curity, Woburn, MA,2007:64-69. 被引量:1
  • 8Li Li, Xu Ji-ning. Moving human detection algo- rithm based on Gaussiarl mixture model[C]///Pro- ceedings of the 29th Chinese Control Conference, Beijing, 2010 : 2853-2856. 被引量:1
  • 9Xu L Q,Landabaso J L, Lei g. Segmentation and tracking of multiple moving objects for intelligent video analysis[J]. BT Technology Journal, 2004, 22(3) : 140-149. 被引量:1
  • 10王小平,张丽杰,常佶.基于单高斯背景模型运动目标检测方法的改进[J].计算机工程与应用,2009,45(21):118-120. 被引量:24

共引文献101

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部