期刊文献+

基于稀疏自编码神经网络的肺结节特征提取及良恶性分类 被引量:12

Feature extraction and benign or malignant classification of lung nodules based on sparse auto-encoder neural network
下载PDF
导出
摘要 目的:针对目前计算机辅助诊断中肺结节特征提取单纯依靠人工设计,分类结果存在很大差异这一问题,提出一种新的肺结节特征自动提取及良恶性分类方法。方法:首先通过阈值概率图从肺部CT图像中分割肺结节图像,然后通过一个2层的稀疏自编码神经网络自动提取肺结节图像的特征,最后利用Logistic回归分类器对提取到的特征进行良恶性分类。结果:肺部图像数据库联盟(1ung image database consortium,LIDC)数据库上的实验结果表明,与目前基于人工设计的特征提取方法相比,该提取方法获得了最高的分类精度与曲线下面积(area under curve,AUC)值。结论:稀疏自编码神经网络能够直接从肺结节图像本身自动提取肺结节特征,避免了人工提取及选择的差异性,提高了肺结节良恶性分类的准确度,能够为临床诊断提供参考依据。 Objective To put forward a method for feature extraction and benign or malignant classification of lung nodules to solve the problems due to manual operation. Methods Firstly, lung nodule images were segmented using the threshold probability-maps method from lung CT images. Secondly, sparse auto-coding neural network was applied in feature extraction and high level features of lung nodules were extracted through multiple auto-encoder. Finally, logistic regression was used to classify benign or malignant nodules by the extracted features. Results Experimental results based on lung image database consortium (LIDC) data set showed that the proposed method had higher classification accuracy and area under curve (AUC) value when compared with manual method. Conchuslon Sparse auto-encoder neural network can extract the features from image level directly, avoid the difference due to manual extraction and selection, improve the classification accuracy and provide references for clinical diagnosis. [Chinese Medical Equipment Journal,2015,36 (12):7-10, 14]
出处 《医疗卫生装备》 CAS 2015年第12期7-10,14,共5页 Chinese Medical Equipment Journal
基金 徐州市科技计划项目(KC14SM089) 江苏省大学生科研训练计划项目(201410313062X) 徐州医学院振兴计划项目
关键词 肺结节 特征提取 稀疏自编码神经网络 良恶性分类 lung nodule feature extraction sparse auto-encoder neural network benign or malignant classification
  • 相关文献

参考文献17

  • 1Jemal A,Bray F.Ferlay J,et al.Global cancer statistics[J].CA:Cancer J Clin,2011,61(2):69-90. 被引量:1
  • 2李彬,田联房,欧陕兴.恶性肺结节早期诊断智能识别相关技术综述[J].生物医学工程学杂志,2009,26(5):1141-1145. 被引量:2
  • 3Iwano S,Nakamura T,Kamioka Y,et al.Computer-aided differentiation of malignant from benign solitary pulmonary nodules imaged by high resolution CT[J].Comput Med Imaging Graph,2008,32(5):416-422. 被引量:1
  • 4Shen W C,Yu Y H.Chuang C H.2011 IEEE Eighth International Conference on Computer graphics,Imaging and Visualization,Singapore,Aug 17-19,2011[C].Piscataway:IEEE Press,2011. 被引量:1
  • 5Krewer H.Geiger B,Hall L O,et al.2013 IEEE International Conference on Systems,Man,and Cybernetics,Manchester,Oct 13-16,2013[C].Piscataway:IEEE Press,2013. 被引量:1
  • 6Hinton G E,Salakhutdinov R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5 786):504-507. 被引量:1
  • 7Dahl D,Yu D.Deng L.et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].IEEE Transactions on Audio,Speech and Language Processing,2012,20(1):30-42. 被引量:1
  • 8Girshick R,Donahue J.Darrell T,et al.2014 IEEE Conference on Computer Vision and Pattern Recognition,Columbus,June 23-28,2014[C].Piscataway:IEEE Press,2014. 被引量:1
  • 9彭博,臧笛.基于深度学习的车标识别方法研究[J].计算机科学,2015,42(4):268-273. 被引量:30
  • 10周慧,周良,丁秋林.基于深度学习的疲劳状态识别算法[J].计算机科学,2015,42(3):191-194. 被引量:9

二级参考文献74

  • 1罗彬,游志胜,曹刚.基于边缘直方图的快速汽车标志识别方法[J].计算机应用研究,2004,21(6):150-151. 被引量:25
  • 2翟伟明,胡成文,张伟宏,牟文斌,赵雁南,贾培发.基于动态自适应体素生长的肺部CT图像3维分割算法[J].中国图象图形学报,2005,10(10):1269-1274. 被引量:11
  • 3王鸣鹏,谭永强,张国桢,张建国,吴昊,杨俭英.计算机辅助孤立性肺结节的良、恶性鉴别诊断[J].中国医学科学院学报,2006,28(1):64-67. 被引量:1
  • 4聂生东,李雯,许建荣,程杰军.自动分割CT图像中肺实质的方法[J].中国医学影像技术,2006,22(9):1428-1431. 被引量:8
  • 5AWAI K, MURAO K, OZAWA A, et al. Pulmonary nodules at chest CT: effect of computer-aided diagnosis on radioioglsts' detection performance[J]. Radiology, 2004, 230(2) : 347-352. 被引量:1
  • 6GURCAN M N, SAHINER B, PETRICK N, et al. Lung nodule detection on thoracic computed tomography images, preliminary evaluation of a computer-aided diagnosis system [J]. Med Phys, 2002, 29(11):2552-2558. 被引量:1
  • 7PAIK D S, BEAULIEU C F,RUBIN G D, et al. Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT [J]. IEEE Trans Med Imag, 2004, 23(6):661-675. 被引量:1
  • 8ARIMURA H, KATSURAGAWA S, SUZUKI K, et al. Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening[J]. Acad Radiol, 2004, 11(6) :617-629. 被引量:1
  • 9SUZUKI K, ARMATO S G, LI F, et al. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography[J]. Med Phys, 2003, 30(7):1602- 1617. 被引量:1
  • 10LEE Y, HARA T, FJUITA H, et al. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique[J]. IEEE Trans Med Imag, 2001, 20(7):595-604. 被引量:1

共引文献71

同被引文献79

引证文献12

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部