期刊文献+

基于Relief特征选择的心衰死亡率预测 被引量:4

Relief feature selection based mortality prediction for heart failure
下载PDF
导出
摘要 提出心衰死亡率预测系统,预测心衰病人本次住院后30天内死亡率。基于上海曙光医院提供的心衰病人信息,首先对原始数据和特征进行预处理。由于特征的冗余性,再选用经典的Relief特征选择算法筛选出重要的心衰特征,最后选用bp-SVM算法来实现死亡率预测。实验结果证明,死亡率预测系统可以达到较高的性能并通过提供决策信息,辅助医生治疗病人。医生可以根据系统预测的病人死亡率的高低,采取不同的治疗方式,提高临床诊断结果和医院的资源分配。 This paper constructs a mortality prediction system that predicts mortality within 30 day after hospitalization in heart failure patients.Data are collected from the Shanghai Shuguang hospital.It preprocesses the data and feature of heart failure patients.A traditional feature selection algorithm called Relief is utilized to select important feature because of redundancy of feature.Finally,this system adopts biased penalties-SVM(bp-SVM)algorithm to predict mortality for heart failure patients.The experimental results show that system can achieve high performance in 30-day mortality prediction.Mortality prediction system aims to assist doctors in treating heart failure patients by providing important decision information.Doctors can apply individualized treatment according to different condition of patients in order to improve the result of clinical diagnosis and the resource allocation.
作者 姚丽娟 李冬冬 王喆 YAO Lijuan;LI Dongdong;WANG Zhe(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China;Provincial Key Laboratory for Computer Information Processing Technology,Soochow University,Suzhou,Jiangsu 215006,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第23期125-130,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61672227) 国家科技部"863计划"(No.2015AA020107)
关键词 特征选择 bp-SVM 死亡率预测 心衰 机器学习 feature selection biased penalties-Support Vector Machine(bp-SVM) mortality prediction heart failure machine learning
  • 相关文献

参考文献11

二级参考文献134

  • 1康俊萍,杜昕,韩智红,胡荣,吴学思,刘晓惠,马长生.重症心力衰竭患者长期生存率观察[J].中华心血管病杂志,2004,32(8):679-679. 被引量:10
  • 2刘胥影,吴建鑫,周志华.一种基于级联模型的类别不平衡数据分类方法[J].南京大学学报(自然科学版),2006,42(2):148-155. 被引量:23
  • 3王华,包承鑫,杨杰孚.慢性心力衰竭的血栓栓塞相关因素研究现状[J].血栓与止血学,2006,12(4):173-175. 被引量:7
  • 4Han Jiawei,Kamber M.数据挖掘概念与技术[M].范明,孟小峰,译.2版.北京:机械工业出版社,2007. 被引量:5
  • 5Gary M, Weiss.Mining S1GKDD Explorations Japkowicz N, Stephen atic study[J].Intelligent with rarity: a unifying framework[J].ACM Newsletter, 2004,6 ( 1 ) : 7-19. 被引量:1
  • 6S.The class imbalance problem:a systemData Analysis,2002,6(5) :429-449. 被引量:1
  • 7Zhu Jingbo,Hovy E.Active learning for word sense disambiguation with methods for addressing the class imbalance problem[C]// Proceedings of Joint Conference on Empirical Methods in Natural Language Processing and Computational,Prague,2007:783-790. 被引量:1
  • 8WittenIH,FrankE.数据挖掘-实用机器学习技术[M].董琳,邱泉,译.2版.北京:机械工业出版社,2007:208.215. 被引量:1
  • 9Chawla N V,Bowyer K W.SMOTE:synthetie minority oversampling technique[J].Journal of Artificial Intelligence Research, 2002(16) :341-378. 被引量:1
  • 10Fan W, Stolfo S J, Junxin Z, et al.AdaCost: misclassification cost-sensitive Boosting[C]//Bratko I.Proceedings of the 6th Inter Conferon Machine Learning (ICMLC).[S.I.]: Morgan Kaufmann, 1999:97-105. 被引量:1

共引文献295

同被引文献30

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部