期刊文献+

联合噪声分类和掩码估计的语音增强方法 被引量:3

Joint noise classification and mask estimation for speech enhancement
下载PDF
导出
摘要 为了克服传统语音增强算法对语音信号和噪声信号各种假设前提的依赖,并且提升语音增强性能,本文在基于深层神经网络的语音增强方法的基础上,提出了一种联合噪声分类和卷积神经网络的时频掩码估计方法。该算法综合考虑到多种类型噪声混合的带噪信号会对训练的卷积神经网络的预测精度产生不同程度的影响,其通过噪声分类识别,自适应被各类噪声污染的语音信号的时频掩码的估计,并利用语音活性检测方法对预测的掩码进行后修正。实验结果表明,该算法在多种噪声环境下取得更大的信噪比增益。 To avoid making unreasonable assumptions for speech and noise signals in traditional speech enhancement methods and promote the performance of speech enhancement,this paper proposed the algorithm joint noise classification and convolutional neural networks(CNN)for speech enhancement,based on deep neural networks(DNN)methods.The proposed algorithm takes information of the fact that unclassified noise will decrease accuracy of the prediction model in training phase and makes specific training for each type noisy speech signal by noise classification.And it adds post-refinement using voice activity detection(VAD).Experimental results show that the proposed algorithm makes a greater promotion on signal to noise ratio(SNR)
作者 凌佳佳 袁晓兵 LING Jia-jia;YUAN Xiao-bing(Science and Technology on Microsystem Laboratory,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China;School of Information Science and Technology,ShanghaiTech University,Shanghai 201210,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《电子设计工程》 2018年第17期30-34,共5页 Electronic Design Engineering
关键词 语音增强 时频掩码 卷积神经网络 噪声分类 speech enhancement time-frequency mask convolutional neural networks noise classification
  • 相关文献

参考文献7

二级参考文献91

  • 1Loizou P. Speech Enhancement: Theory and Practice [ M ]. Boca Ra- ton : Florida: CRC Press LLC ,2007. 被引量:1
  • 2Hu Y, Loizou P. A comparative intelligibility study of single-micro- phone noise reduction algorithms [ J ]. J. Acoust. Soc. Am, 2007,22 (3) :1777 - 1786. 被引量:1
  • 3Ephraim Y, Malah D. Speech enhancement using a minimum mean- square error short-time spectral amplitude estimator[ J]. IEEE Trans. Acoust, Speech, Signal Processing, 1984,32 (6) : 1109 - 1121. 被引量:1
  • 4Chen F, Loizou P. Impact of SNR and gain-function over- and under- estimation on speech intelligibility [ J ]. Speech Communication,2012, 54:272 - 281. 被引量:1
  • 5Whitehead P, Anderson D. Robust Bayesian analysis applied to Wie- ner filtering of speech [ C ]//Proc. 36th IEEE Int. Conf. Acoust. Speech Signal Process, Prague ,2011:5080 - 5083. 被引量:1
  • 6Loizou P, Kim G. Reasons why current speech-enhancement algo- rithms do not improve speech intelligibility and suggested solutions [J]. IEEE Trans. Audio, Speech, Lang. Process, 2011,19 ( 1 ) : 47 -56. 被引量:1
  • 7Sealart P, Vieira-Filho V. Speech enhancement based on a priori sig- nal to noise estimation [-C ]//Proc. 21st IEEE Int. Conf. Acoust. Speeeh Signal Processing, Atlanta,1996:629 - 632. 被引量:1
  • 8Alam M J, O'Shaughnessy D. Perceptual improvement of Wiener filte- ring employing a post-filter[J], Digital Signal Processing,2011,21:54 - 65. 被引量:1
  • 9IEEE Subcommittee. IEEE Recommended Practice for Speech Quality Measurements[J]. IEEE Trans. Audio and Electroacoustics, 1969,17 (3) :225 -246. 被引量:1
  • 10Ma J, Hu Y, Loizou P. Objective measures for predicting speech intel- ligibility in noisy conditions based on new band-importance functions [ J ]. J. Acoust. Soc. Am,2009,125 ( 5 ) : 3387 - 3405. 被引量:1

共引文献83

同被引文献19

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部