期刊文献+

一种低信噪比条件下的高可懂度的语音增强算法 被引量:3

A SPEECH ENHANCEMENT ALGORITHM WITH HIGH INTELLIGIBILITY UNDER LOW SNR CONDITION
下载PDF
导出
摘要 研究表明,增强后的语音与纯净语音相比,会存在两种不同类型的畸变:放大畸变和衰减畸变,而放大畸变对语音可懂度的影响较大。传统的语音增强算法大多不能有效提高语音增强后的可懂度,因为这些算法仅使用最小均方误差的方法来限制这两种畸变,从而抑制噪声,提高语音的质量,但忽略了不同的畸变类型对可懂度的影响不同。提出一种基于子空间的提高可懂度的语音增强算法,使用先验信噪比及增益矩阵来判断语音畸变的类型。同时注意到,在估计先验信噪比时会存在估计误差:高估和低估,而高估会产生放大畸变,对可懂度造成较大的影响。先对高估先验信噪比(小于-10 dB)的增益矩阵进行修正,然后再对幅度谱畸变大于0 dB及6.02 dB的语音进行不同的限制。实验表明,所提出的算法能够有效增强语音的可懂度。 Research shows that compared with pure speech,there will be two types of distortion in enhanced speech: the amplifier distortion and the attenuation distortion,and the amplifier distortion has a bigger influence on the speech intelligibility. Most of traditional speech enhancement algorithms cannot effectively improve the intelligibility after the speech being enhanced,because they only use the minimum mean square error method to limit these two kinds of distortions for suppressing noise and improving the quality of the speech,but neglect the different distortions having different effects on intelligibility. This paper proposes a subspace-based speech enhancement algorithm which can improve the intelligibility,it uses priori signal-to-noise ratio( SNR) and gain matrix to judge the type of speech distortion. At the same time,it is noticed that when estimating the priori SNR,there is the estimation error: overestimation and underestimation. The overestimation will produce amplifier distortion,and has a big influence on the intelligibility. We first correct the gain matrix of the overestimated priori SNR( less than- 10 dB),and then make different restrictions on the speeches with amplitude spectrum distortion greater than 0 dB and 6. 02 dB separately. Experimental results show that the proposed algorithm can effectively enhance the intelligibility of the speech.
出处 《计算机应用与软件》 CSCD 2016年第10期145-147,180,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61371193)
关键词 子空间 语音可懂度 语音畸变 先验信噪比 增益矩阵 Subspace Speech intelligibility Speech distortion Priori SNR Gain matrix
  • 相关文献

参考文献17

  • 1Hu Y,Loizou P C.A comparative intelligibility study of single-microphone noise reduction algorithms[J].Journal of the Acoustical Society of America,2007,122(3):1777-1786. 被引量:1
  • 2Loizou P C,Kim G.Reasons why current speech-enhancement algorithms do not improve speech intelligibility and suggested solutions[J].IEEE Transactions on.Audio,Speech and Language Processing,2011,19(1):47-56. 被引量:1
  • 3刘鹏,马建芬.具有较高可懂度的子空间语音增强算法[J].计算机工程与设计,2013,34(7):2619-2622. 被引量:4
  • 4Yang Y X,Ma J F.Speech Intelligibility Enhancement Using Distortion Control[J].Advanced Materials Research,2014,912-914:1391-1394. 被引量:1
  • 5郭利华,马建芬.具有高可懂度的改进的维纳滤波的语音增强算法[J].计算机应用与软件,2014,31(11):155-157. 被引量:12
  • 6Sharma P,Abrol V,Sao A K.Supervised speech enhancement using compressed sensing[C]//Communications(NCC),2015 Twenty First National Conference on.IEEE,2015:1-5. 被引量:1
  • 7Kwon K,Shin J W,Sonowat S,et al.Speech enhancement combining statistical models and NMF with update of speech and noise bases[C]//Acoustics,Speech and Signal Processing(ICASSP),2014IEEE International Conference on.IEEE,2014:7053-7057. 被引量:1
  • 8Xu Y,Du J,Dai L R,et al.A Regression Approach to Speech Enhancement Based on Deep Neural Networks[J].Audio,Speech and Language Processing,IEEE/ACM Transactions on,2015,23(1):7-19. 被引量:1
  • 9Djendi M,Scalart P.Reducing over-and under-estimation of the a priori SNR in speech enhancement techniques[J].Digital Signal Processing,2014,32:124-136. 被引量:1
  • 10张亮,龚卫国.一种改进的维纳滤波语音增强算法[J].计算机工程与应用,2010,46(26):129-131. 被引量:19

二级参考文献44

  • 1陈国明,赵力,邹采荣.窄带噪声下的子空间语音增强算法[J].应用科学学报,2007,25(3):243-246. 被引量:5
  • 2Lim J S, Oppenheim A V.Enhancement and bandwidth compression of noisy speech[C]//Proceedings of the IEEE, 1979, 67: 1586-1604. 被引量:1
  • 3Ephraim Y,Malah D.Speech enhancement using a minimum meansquare error log-spectral amplitude estimator[J].IEEE Trans on Acoustics,Speech,Signal Processing, 1985,ASSP-32:443-445. 被引量:1
  • 4Ephraim Y, Malah D.Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator[J]. IEEE Trans on Acoustics, Speech, Signal Processing, 1984, AS- SP-32 : 1109-1121. 被引量:1
  • 5Capp60.Elimination of the musical noise phenomenon with the Ephraim and Malah noise suppressor[J].IEEE Trans on Speech and Audio Processing, 1994,2 (2) : 345-349. 被引量:1
  • 6Scalart P,Vieira-Filho J.Speech enhancement based on a priori signal to noise estimation[C]//Proc 21st IEEE Int Conf Acoust Speech Signal Processing, Atlanta, GA, 1996,2 (2) : 629-632. 被引量:1
  • 7Cohen I.Speech enhancement using a noncausal a priori SNR estimator[J].IEEE Signal Processing Letters,2004(9):725-728. 被引量:1
  • 8Arslan L M.Modified Wiener filtering[J].Signal Processing,2006, 86(2) :267-272. 被引量:1
  • 9Xu Yao-hua, Guo Ying, Li Wei, et al.Elimination of musical noise phenomenon with Burg-based a priori SNR estimator[C]// Image and Signal Processing, 2008, CISP' 08,2008,5 : 328-332. 被引量:1
  • 10EPHRAIM Y,TREES H L V.A signal subspace approach for speech enhancement[J].IEEE Trans on Speech and Audio Processing,1995,3(7):251-261. 被引量:1

共引文献32

同被引文献34

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部