期刊文献+

一种改进的基于压缩感知的心电压缩算法 被引量:2

An Improved Compressed Sensing-Based ECG Compression Algorithm
下载PDF
导出
摘要 为了解决远程动态心电记录仪数据量过大的问题,并且克服基于压缩感知的压缩算法压缩比有限的问题,提出压缩感知压缩与移位差分位压缩结合的心电数据压缩算法,移位差分位压缩算法是无损压缩算法,在不影响压缩感知重构精度的前提下进一步提高压缩比;经实验证明,该方法将压缩感知原有4倍的压缩比最高提高到11倍,最小为4.81倍,压缩端的计算复杂度为O(N),满足远程动态心电记录仪的需求。 In order to solve the problem of huge data in remote holter recording,ensure the accuracy of ECG data reconstruction and reduce compression power consumption,an algorithm that combines compressive sensing compression with shift differential bit compression is proposed.Shift difference bit compression is a lossless compression algorithm,which improves the compression ratio without affecting the reconstruction accuracy.Block sparse Bayesian model is used to reconstruct ECG signals,the reconstruction accuracy meets the needs of physicians for diagnosis.Experiments show that the maximum compression ratio obtained by this method is 11,the minimum value is 4.81,and the computational complexity of the compression end is O(N).This satisfies the requirements of remote dynamic ECG recorders.
作者 王玉娇 刘昱 陈林海 杨连军 Wang Yujiao;Liu Yu;Chen Linhai;Yang Lianjun(Institute of Microelectronics of the Chinese Academy of Sciences Beijing 100029,China;China R&D for Internet of Things,Wuxi 214028,China;University of Chinese Academy of Sciences,Beijing 100864,China;Beijing Key Laboratory of Radio Frequency IC Technology for Next Generation Communications,Beijing 100029,China)
出处 《计算机测量与控制》 2018年第7期266-270,共5页 Computer Measurement &Control
关键词 心电数据 压缩感知 移位差分位压缩算法 远程动态心电记录仪 ECG Signals compress sensing the shift differential compression algorithm(SDCA) remote ECG transmission
  • 相关文献

参考文献3

二级参考文献15

  • 1Marcelloni F, Vecchio M. A Simple Algorithm for Data Compression in Wireless Sensor Networks [J]. IEEE Communications Letters, 2008, 12 (6): 411-413. 被引量:1
  • 2Deborah E. Wireless Sensor Networks Tutorial Part IV: Sensor Network Protocols [C]. Atlanta, Georgia, USA: MobiCom, 2002, 23 - 28. 被引量:1
  • 3Anastasi G, Conti M, M Di Francesco, et al. How to prolong the lifetime of wireless sensor networks [M]. M. Denko, L. Yang (Eds.), Mobile Ad hoe and Pervasive Communications, American Scientific Publishers, in press (Chapter5). http: //info. iet. unipi. it/-anastasi/papers/Yang, pdf. 被引量:1
  • 4S Croce, F Marcelloni, M Vecchio. Reducing power consumption in wireless sensor networks using a novel approach to data aggregation [J]. The Computer J., 2008, 51 (2): 227-239. 被引量:1
  • 5Sadler C M, Martonosi M. Data compression algorithms for energy --constrained devices in delay tolerant networks [A]. Boulder, CO, United states:SenSys'06:4th Int. Conference on Embedded networked sensor systems [C]. 2006, 265 - 278. 被引量:1
  • 6Li Z N. Adaptive Huffman Compression [EB/OL]. http: // www. cs. sfu. ca/cs/CC/365/li/squeeze/AdaptiveHuff. html. 被引量:1
  • 7Akyildiz I F, Su W, Sankarasubr Asubramaniam Y. A survey on sensor networks [J] . IEEE Communications Magazine, 2002, 40 (8): 25-29. 被引量:1
  • 8Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information f-J] .IEEE Trans. Information Theory, 2006, 52 (4): 45 -48. 被引量:1
  • 9李建中,高宏.无线传感器网络的研究进展[J].计算机研究与发展,2008,45(1):1-15. 被引量:441
  • 10焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:315

共引文献19

同被引文献9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部