期刊文献+

分布式监测系统缓变信号无损压缩方法研究 被引量:2

Lossless Compression Method Research of Slowly Varying Signals for Distributed Monitoring System
下载PDF
导出
摘要 分布式监测系统长时间的连续监测会产生大量的状态参数,为了数据实时连续传输及节省以数据流量计费的数据传输成本,在分析分布式监测系统传输模型基础上,对无损压缩方法中的霍夫曼编码和LZW算法进行了研究;针对缓变信号相似程度高的特点,提出了基于动态规划的霍夫曼编码和LZW数据压缩算法,使用上述方法,对发动机状态监测数据进行压缩,通过比较,基于动态规划的霍夫曼编码方法压缩率最高,对于水温、油温、油压性能参数的压缩率均在60%以上,该方法成功应用于大型复杂装备分布式监测系统中,有效减少了信号冗余度,提高了数据传输效率。 A mass of monitoring condition data is produced in distributed monitoring system for a long time. In order to transmit continu- ously and economize for data input stream, lossless compression methods of Huffman coding and LZW algorithm are researched on basis of analyzing the transmitting model. In view of the characteristics of a high similar degree for slowly varying signals, data compression methods of Huffman coding and LZW based on dynamic programming are put forward. The engine condition monitoring data is compressed through the methods above. By comparison, the Huffman coding based on dynamic programming has the highest compression ratio, which is over six- ty percent for the performance parameters of water temperature, oil temperature and oil pressure. The method is successfully applied in dis- tributed monitoring system for large-- scale mobile complex equipment to reduce the data redundancy and improve the efficiency of data trans- mission.
机构地区 军械工程学院
出处 《计算机测量与控制》 北大核心 2014年第3期926-929,共4页 Computer Measurement &Control
基金 国家自然科学基金项目(51205405) 军队重点科研项目([20XX]X号)
关键词 分布式监测 霍夫曼编码 LZW算法 动态规划 distributed monitoring Huffman coding LZW algorithm dynamic programming
  • 相关文献

参考文献8

二级参考文献18

  • 1杨建宇,杨崇俊,明冬萍,任应超,李津平.WebGIS系统中矢量数据的压缩与化简方法综述[J].计算机工程与应用,2004,40(32):36-38. 被引量:26
  • 2浣上,龙志强.磁悬浮列车运行数据记录器的设计与实现[J].工业仪表与自动化装置,2005(4):13-16. 被引量:3
  • 3周召发,陶建忠,陈雪松,黄先祥.基于无线遥测的大型装备在线监测与故障诊断[J].兵工学报,2005,26(4):545-548. 被引量:8
  • 4Marcelloni F, Vecchio M. A Simple Algorithm for Data Compression in Wireless Sensor Networks [J]. IEEE Communications Letters, 2008, 12 (6): 411-413. 被引量:1
  • 5Deborah E. Wireless Sensor Networks Tutorial Part IV: Sensor Network Protocols [C]. Atlanta, Georgia, USA: MobiCom, 2002, 23 - 28. 被引量:1
  • 6Anastasi G, Conti M, M Di Francesco, et al. How to prolong the lifetime of wireless sensor networks [M]. M. Denko, L. Yang (Eds.), Mobile Ad hoe and Pervasive Communications, American Scientific Publishers, in press (Chapter5). http: //info. iet. unipi. it/-anastasi/papers/Yang, pdf. 被引量:1
  • 7S Croce, F Marcelloni, M Vecchio. Reducing power consumption in wireless sensor networks using a novel approach to data aggregation [J]. The Computer J., 2008, 51 (2): 227-239. 被引量:1
  • 8Sadler C M, Martonosi M. Data compression algorithms for energy --constrained devices in delay tolerant networks [A]. Boulder, CO, United states:SenSys'06:4th Int. Conference on Embedded networked sensor systems [C]. 2006, 265 - 278. 被引量:1
  • 9Li Z N. Adaptive Huffman Compression [EB/OL]. http: // www. cs. sfu. ca/cs/CC/365/li/squeeze/AdaptiveHuff. html. 被引量:1
  • 10Ziv J,Lempel A.A universal algotithm for sequential data compression[J].IEEE Trans.Information Theory,1977,IT-23(3):337-343. 被引量:1

共引文献35

同被引文献10

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部