摘要
研究一类非线性Riemann-Liouville型分数阶微分方程耦合系统解的存在性.利用格林函数的性质和Guo-Krasnosel’skii’s不动点定理,得到该耦合系统解存在性的充分条件,并举例说明结论的适用性.
In this paper,we study the existence of solutions for a coupled system of nonlinear Riemann-Liouville fractional differential equations.We obtain the sufficient conditions for existence of solutions by using the properties of the associated Green’s function and Guo-Krasnoselskii’s fixed point theorem.Then one example is given to illustrate the applicability of our main results.
作者
薛益民
刘洁
戴振祥
徐媛媛
XUE Yimin;LIU Jie;DAI Zhenxiang;XU Yuanyuan(School of Mathematics and Physics,Xuzhou University of Technology,Xuzhou 221018,Jiangsu)
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2018年第5期614-620,共7页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学数学天元基金(11526177)
江苏省自然科学基金(BK20151160)
关键词
分数阶微分方程
GREEN函数
耦合系统
不动点定理
fractional differential equations
Green’s function
coupled system
fixed point theorem