摘要
将曲线轨道视为周期性离散支承结构,根据周期性结构的振动特性,将曲线轨道动力响应的求解问题转化在一个基本元之内进行研究,将固定谐振荷载视为速度为零的移动谐振荷载,通过引入移动谐振荷载作用下曲线轨道钢轨的频域数学模态及广义波数,得出曲线轨道钢轨扭转振动频域响应的级数表达。在频域内采用模态叠加法表示钢轨的扭转振动,进而求解得出不同激振频率下钢轨的扭转振动频域响应,得到曲线轨道扭转振动频率响应函数。针对曲线轨道扭转振动频响特性,分析了扣件支点扭转刚度、扭转阻尼系数、扣件支点间距以及曲线半径等因素对频响函数的影响。
Modelling dynamic behavior of curved railway track subjected to fixed harmonic loads is important to understand its dynamic properties.In this paper,the discr etely supported curved Euler-Bernoulli beam is used to simulate the curved track.Dynamic response of the curved track can be solved within one basic cell based on property of periodical structure in the frequency domain.The fixed harmoni cloads are viewed as moving harmonic loads with zero velocity.By introduction of mathematic modes and generalized wave numbers of the track under moving harmo nicloads,the torsional dynamic response of the curved track in the frequency domain is obtained in series form.Using the mode superposition method,the torsional dynamic responses of curved track with different excitation frequencies are achieved.Furthermore,the effects of torsional support stiffness,torsional support damping coefficient,the fastener support spacing and the curve radius on the frequency response function of torsional vibration are analyzed.
作者
杜林林
刘维宁
刘卫丰
马龙祥
DU Lin-lin;LIU Wei-ning;LIU Wei-feng;MA Long-xiang(Institute of Tunneling and Underground Engineering,School of Civil Engineering,Beijing Jiaotong University, Beijing 100044,China;Institute of Underground Engineering,School of Civil Engineering,Southwest Jiaotong University, Chengdu 610031,China)
出处
《振动工程学报》
EI
CSCD
北大核心
2018年第4期644-653,共10页
Journal of Vibration Engineering
基金
国家自然科学基金资助项目(51378001)
关键词
曲线轨道
弯扭耦合
周期结构
频域模态叠加法
频响函数
curved track
coupling of bending and torsion
periodical structure
modes superposition method in frequency domain
frequency response function