期刊文献+

基于NSGA-Ⅱ的扩展置信规则库激活规则多目标优化方法 被引量:3

NSGA-Ⅱ-based EBRB rules activation multi-objective optimization
下载PDF
导出
摘要 针对扩展置信规则库(extended belief rule base,EBRB)系统在不一致的激活规则过多时推理准确性不高的问题,引入带精英策略的快速非支配排序遗传算法(NSGA-Ⅱ),提出一种基于NSGA-Ⅱ的激活规则多目标优化方法。该方法首先将激活权重大于零的规则(即激活规则)进行二进制编码,把最终参与合成推理的激活规则集合的不一致性以及激活权重和作为多目标优化问题的目标函数,通过带精英策略的快速非支配排序遗传算法求解不一致性更小的激活规则集合,从而降低不一致激活规则对于EBRB系统推理准确性的影响。为了验证本文方法的有效性和可行性,引入非线性函数和输油管道检漏实例进行测试。实验结果表明,基于NSGA-Ⅱ的扩展置信规则库激活规则多目标优化方法能够有效提高EBRB系统的推理能力。 To address the low reasoning accuracy of extended belief rule-base(EBRB)systems with too many inconsistent activated rules,this paper introduces a fast elitist non-dominated sorting genetic algorithm(NSGA-II)and proposes a rule activation multi-objective optimization approach based on the NSGA-II algorithm.In this approach,binary coding is carried out for the activated rules whose activation weights are greater than zero.The inconsistent set of activated rules following synthetic reasoning and the sum of activation weights are taken as the objective function of the multi-objective optimization problem.Using the fast elitist non-dominated sorting genetic algorithm,the problem of a set of activation rules with a small inconsistency is solved,reducing the effect of the inconsistent activated rules on the reasoning accuracy of EBER systems.To validate the efficiency and feasibility of the proposed method,this paper introduces a nonlinear function and the proposed method was tested against the leak detection of an oil pipeline.The experimental results show that the rule activation multi-objective optimization approach based on NSGA-II can effectively improve the reasoning performance of EBRB systems.
作者 林燕清 傅仰耿 LIN Yanqing;FU Yanggeng(College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350116,China)
出处 《智能系统学报》 CSCD 北大核心 2018年第3期422-430,共9页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(71501047,61773123) 福建省自然科学基金项目(2015J01248).
关键词 扩展置信规则库 不一致性 激活规则 多目标优化 NSGA-II算法 extended belief rule base(EBRB) inconsistency activation rules multi-objective optimization NSGA-II algorithm
  • 相关文献

参考文献8

二级参考文献66

  • 1时贞军.一个新的无约束优化超记忆梯度算法(英文)[J].数学进展,2006,35(3):265-274. 被引量:24
  • 2J B Yang,J Liu,J Wang,et al.A generic rule-base inference methodlogy using the evidential reasoning approachRIMER[J].IEEE Transactions on systems,Man,and Cybernetics-part A:Systems and Humans,2005,14 (2):1-20. 被引量:1
  • 3J B Yang,J Wang,G P Liu,et al.Optimisation models for training belief rule based systems[J].IEEE Transactions on systems,Man,and Cybernetics-part A:Systems and Humans,2005,21 (4):1-28. 被引量:1
  • 4J B Yang.Rule and utility based evidential reasoning approach for multiple-attribute decision analysis under uncertainty[J].European Journal of Operational Research,2002,32 (3):289-304. 被引量:1
  • 5甘应爱 等.运筹学[M].北京:清华大学出版社,1990.. 被引量:75
  • 6周志杰.置信规则库在线建模方法与故障预测[D].西安:第二炮兵工程学院,2010. 被引量:4
  • 7YANG J-B,LIU J,WANG J,et al.Belief rule-base inference methodology using the evidential reasoning approach-RIMER [J].IEEE Transactions on Systems,Man and Cybernetics,Part A:Systems and Humans,2006,36(2):266-285. 被引量:1
  • 8SUN R.Robust reasoning:integrating rule-based and similarity-based reasoning [J].Artificial Intelligence,1995,75(2):241-295. 被引量:1
  • 9DEMPSTER A.A generalization of Bayesian inference [J].Journal of the Royal Statistical Society,Series B:Methodological,1968,30(2):205-247. 被引量:1
  • 10SHAFER G.A mathematical theory of evidence [M].Princeton:Princeton University Press,1976. 被引量:1

共引文献33

同被引文献21

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部