期刊文献+

置信规则库专家系统学习优化问题的研究 被引量:2

Research on the Optimization Problem of Belief Rule Baesd Expert System
下载PDF
导出
摘要 针对基于证据推理的置信规则库专家系统(RIMER)的学习优化问题,在训练参数仅为规则的置信度、权重的基础上,通过增加前提属性参考值及输出参考值为训练参数来实现局部扩展训练和全局训练,并使用MATLAB中FMINCON函数对参数进行优化求解.分别将该专家系统应用在发动机故障诊断和数据逼近中,并对其进行训练优化.结果表明,与局部扩展优化相比,全局优化时,RIMER系统能更好地模拟实际系统,对参数的优化程度越深,RIMER系统的精度越高. To solve the optimization problem of belief rule based system based on evidential reasoning (RIMER), on the basis of the training parameters of only belief degree and weight, referential values for antecedent attribute and output are added to achieve local expansion training and global training, and the FMINCON function in MATLAB software is used to solve the training parameters. Moreover, RIMER expert system is established and trained for fault diagnosis of engine and data approximation. The results show that the RIMER system can simulate the actual system better in the global training optimization. That is, if the degree of optimization of the parameters is deeper, the precision of RIMER system will be higher.
出处 《华北水利水电大学学报(自然科学版)》 2015年第4期72-78,共7页 Journal of North China University of Water Resources and Electric Power:Natural Science Edition
基金 河南省教育厅科学技术研究重点项目(14A120013)
关键词 置信规则库 专家系统 扩展局部优化 全局优化 belief rule base expert system local expansion optimization global optimization
  • 相关文献

参考文献11

二级参考文献57

  • 1时贞军.一个新的无约束优化超记忆梯度算法(英文)[J].数学进展,2006,35(3):265-274. 被引量:24
  • 2刘松 韩廷文 侯希久 等.导弹环境因子计算.战术导弹技术,1984,(2):10-17. 被引量:2
  • 3韩崇朝,朱洪艳,段战胜.多源信息融合[M].北京:清华大学出版社.2006:90-96. 被引量:1
  • 4Yang J B, Liu J, Wang J, et al. Belief-rule-base inference methodology using the evidential reasoning Approach-RIMER [ J ]. IEEE Transaction on System, Man, and Cybernatics-Part A : Systems and Humans, 2006,36 (2) : 266 - 285. 被引量:1
  • 5Yang J B, Liu J, Xu D L, et al. Optimization models for training belief-rule-based systems [ J ]. IEEE Transaction on Systems, Man, and Cyb-ernetics-part A: Systems and Humans, 2005,21 ( 4 ) : 1 - 28. 被引量:1
  • 6J B Yang,J Liu,J Wang,et al.A generic rule-base inference methodlogy using the evidential reasoning approachRIMER[J].IEEE Transactions on systems,Man,and Cybernetics-part A:Systems and Humans,2005,14 (2):1-20. 被引量:1
  • 7J B Yang,J Wang,G P Liu,et al.Optimisation models for training belief rule based systems[J].IEEE Transactions on systems,Man,and Cybernetics-part A:Systems and Humans,2005,21 (4):1-28. 被引量:1
  • 8J B Yang.Rule and utility based evidential reasoning approach for multiple-attribute decision analysis under uncertainty[J].European Journal of Operational Research,2002,32 (3):289-304. 被引量:1
  • 9甘应爱 等.运筹学[M].北京:清华大学出版社,1990.. 被引量:75
  • 10Chao Chuntang, Teng Chingcheng. A fuzzy neural n-etwork based extended Kalman filter[J]. International Journal of Systems Science, 1996,27:333-339. 被引量:1

共引文献53

同被引文献5

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部