期刊文献+

基于多代理协作的IT复杂应用管理任务分解算法 被引量:9

Task Decomposition Algorithm for IT Complex Application Management Based on Multi-Agent Collaboration
下载PDF
导出
摘要 基于多代理协作的IT复杂应用管理模型,给出了用于IT复杂应用管理的代理能力模型及管理任务分解问题的基本原则,进而提出了一种动态多角色的管理任务层级分解算法.算法考虑到多代理的能力限制,以及由管理端策略、IT基础设施或业务逻辑改变而引起的IT复杂应用管理任务的动态性.同时,算法兼顾了分解后子任务的平衡性,即执行子任务的多代理的负载平衡性,能够有效地提高多代理的执行效率和稳定性.仿真结果显示,由该算法所分解的子任务集呈现出了良好的执行效率及稳定的负载平衡性. This paper presents a dynamic hieratical task decomposition algorithm which applies for a management module of complex IT application based on multi-agent collaboration. The algorithm considers the capacity restriction of multi-agent and the dynamicity of management task caused by the variation of management strategy, IT infrastructure and service logic. Meanwhile, it also considers the balance issue of sub tasks after decomposition, which is the load balance issue of the corresponding multi-agent. The algorithm effectively improves the task executing efficiency and stability of multi-agent. Simulation and analysis results show that the algorithm in this paper is more efficient and has steadier load distribution than that of other compared algorithms.
出处 《软件学报》 EI CSCD 北大核心 2011年第9期2049-2058,共10页 Journal of Software
基金 国家自然科学基金(60821001 60973108 60902050) 国家重点基础研究发展计划(973)(2007CB310703) 国家高技术研究发展计划(863)(2008AA01Z201)
关键词 多代理系统 IT复杂应用管理 任务分解 多代理能力限制 负载平衡度 multi-agent complex IT application task decomposition capacity restriction of multi-agent load balance factor
  • 相关文献

参考文献2

二级参考文献26

  • 1蒋建国,夏娜,齐美彬,木春梅.一种基于蚁群算法的多任务联盟串行生成算法[J].电子学报,2005,33(12):2178-2182. 被引量:26
  • 2王本年,高阳,陈兆乾,谢俊元,陈世福.RLGA:一种基于强化学习机制的遗传算法[J].电子学报,2006,34(5):856-860. 被引量:9
  • 3Coffinan E G. Computer and Job-Shop Scheduling Theory [M] .New York:John Wiley & Sons, 1976. 被引量:1
  • 4S Menon. Effective reformulations for task allocation in distributed systems with a large number of communicating tasks [J]. IEEE Transactions on Knowledge and Data Engineering, 2004,16(12) : 1497 - 1508. 被引量:1
  • 5Vig L, Adams J A. Issues in multi-robot coalition formation [A ]. Proceedings of Intemational Workshop on Multi-Robot Systems[ C]. Washington DC: Swarms to Intelligent Automata, 2005.15 - 26. 被引量:1
  • 6Antonio Miranda Garcia. Approximation algorithms for multiprocessor task scheduling[ D]. Texas A & M University, 1998. 被引量:1
  • 7Spielman D A, Teng S H. Smoothed analysis: why the simplex algorithm usually takes polynomial time. [ J ]. Journal of the ACM,2004,51(3) :385 - 463. 被引量:1
  • 8高阳.强化学习研究进展机器学习及其应用[M].北京:清华大学出版社,2006.116-133. 被引量:1
  • 9R S Sutton, D Precup, S Singh. Between MDPs and semi- MDPs:A framework for temporal abstraction in reinforcement leaming[J]. Artificial Intelligence, 1999, 112( 1/2): 181 - 211. 被引量:1
  • 10Pettinger J E, Everson R M. Controlling genetic algorithms with reinforcement learning[ A ]. Proceedings of the Genetic and Evolutionary Computation [C]. San Francisco: Morgan Kaufmann Publishers Inc, 2(102.692 - 692. 被引量:1

共引文献17

同被引文献110

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部