期刊文献+

基于灰色马尔科夫模型的突发水污染事故预测 被引量:9

The Prediction of Sudden Water Pollution Accident Based on Gray Markov Model
下载PDF
导出
摘要 以我国2004-2015年突发水污染事故次数为基础,分析了我国突发水污染事故在12年内的发生情况,应用灰色马尔科夫模型预测2016、2017年我国突发水污染事故发生数.结果表明:1)2004-2015年,突发性水污染形势严峻,但全国突发水污染事故数总体呈下降趋势.2)在灰色GM(1,1)模型预测的基础上,运用马尔科夫对突发水污染事故预测结果优化,充分体现了灰色理论适用于"小样本、贫信息"数据特点和马尔科夫链可处理数据离散的随机过程的优势.3)灰色马尔科夫模型预测的2016、2017年我国突发水污染事故数173起、136起比灰色预测的128起、114起更准确,符合实际情况,可为后续的突发水污染事故变化趋势进行定量分析提供基础数据. The occurrence conditions of sudden water pollution accidents in China within 12 years were analyzed based on the number of sudden water pollution accidents in China from 2004 to 2015.The gray Markov model was used to predict the number of sudden water pollution accidents in China in 2016 and 2017.The results show that:1)In 2004 and 2015,the sudden water pollution situation was severe,but the number of sudden water pollution accidents in China was declining.2)On the basis of the gray model,the Markov chain was used to optimize prediction results.This fully demonstrated that gray theory is applicable to the"small sample,poor information"data and that Markov chain has the advantages of dealing with the random process of discrete data.3)the prediction results in 2016 and 2017 of gray Markov chain model was more accurate than the gray model,and it was in line with the actual situation and could provide the basic data for the quantitative analysis of the follow up trend of sudden water pollution accidents.
作者 靳春玲 王运鑫 JIN Chun-ling;WANG Yun-xin(School of Civil Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《兰州交通大学学报》 CAS 2018年第2期110-115,共6页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金(51669010) 甘肃省自然基金(17JR5RA105) 甘肃省"十三五"教育科学规划课题(GS[2017]GHB0382 GS[2016]GHB0233)
关键词 水利工程 预测 灰色马尔科夫 突发水污染事故 hydraulic engineering prediction gray Markov sudden water pollution accidents
  • 相关文献

参考文献22

二级参考文献227

共引文献219

同被引文献88

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部