期刊文献+

基于监督核哈希生成视觉词袋模型的图像分类

Image Classification Based on Supervised Hashing with Kernels
下载PDF
导出
摘要 为了解决大规模数据集下传统视觉词袋模型生成时间长、内存消耗大且分类精度低等问题,提出了基于监督核哈希(Supervised Hashing with Kernels,KSH)的视觉词袋模型。首先,提取图像的SIFT特征点,构造特征点样本集。然后,学习KSH函数,将距离相近的特征点映射成相同的哈希码,每一个哈希码代表聚类中心,构成视觉词典。最后,利用生成的视觉词典,将图像表示为直方图向量,并应用于图像分类。在标准数据集上的实验结果表明,该模型生成的视觉词典具有较好的区分度,有效地提高了图像分类的精度和效率。 In order to solve the problems of high generation time,large memory consumption and low classification accuracy of traditional bag of visual word(BoVW)model under large scale datasets,a BoVW model based on supervised hashing with kernels(KSH)is presented.Firstly,the feature point sample set was constructed by extracting the SIFT feature points of the image.Then learning KSH function,the similarity feature points were mapped to the same hash code,and each hash code represented the cluster center,so the visual dictionary was constituted.Finally,the generated visual dictionary was used to represent the image as a histogram vector and applied to image classification.The experimental results on the standard dataset show that the visual dictionary generated by the model has a good distinguishing degree,which effectively improves the accuracy and efficiency of image classification.
作者 刘相利 郭海儒 曲宏山 黄强强 LIU Xiang-li;GUO Hai-ru;QU Hong-shan;HUANG Qiang-qiang(School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000,China;School of Computer Science,Henan University of Engineering,Zhengzhou 451191,China)
出处 《测控技术》 CSCD 2018年第3期6-9,共4页 Measurement & Control Technology
基金 国家自然科学基金青年科学基本项目资助(61301232)
关键词 监督核哈希 视觉词袋 视觉词典 图像分类 KSH bag of visual word visual dictionary image classification
  • 相关文献

参考文献4

二级参考文献50

  • 1杨春梅,万柏坤,丁北生.数据预处理和初始化方法对K-均值聚类的影响[J].仪器仪表学报,2003,24(z1):189-192. 被引量:4
  • 2Lowe D G.Distinctive image features from scale-invariantkeypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 3Sivic J and Zisserman A.Video Google:a text retrievalapproach to object matching in videos[C].Proceedings of 9thIEEE International Conference on Computer Vision,Nice,2003:1470-1477. 被引量:1
  • 4Jurie F and Triggs B.Creating efficient codebooks for visualrecognition[C].Proceedings of International Conference onComputer Vision,Beijing,2005:604-610. 被引量:1
  • 5Canada Idée Inc.Reverse image search system.http://www.tineye.com[2011-03]. 被引量:1
  • 6Google Company.Google goggles.http://www.google.com/mobile/goggles/[2011-03]. 被引量:1
  • 7Nister D and Stewenius H.Scalable recognition with avocabulary tree[C].Proceedings of IEEE Conference onComputer Vision and Pattern Recognition,New York,2006:2161-2168. 被引量:1
  • 8Philbin J,Chum O,Isard M,et al..Object retrieval withlarge vocabularies and fast spatial matching[C].IEEEConference on Computer Vision and Pattern Recognition.Minneapolis,June 17-22,2007:1-8. 被引量:1
  • 9Cao Yang,Wang Chang-hu,Li Zhi-wei,et al..Spatial-bag-of-features[C].IEEE Conference on Computer Visionand Pattern Recognition,San Francisco,USA,2010:3352-3359. 被引量:1
  • 10Marée R,Denis P,Wehenkel L,et al..Incremental indexingand distributed image search using shared randomizedvocabularies[C].Proceedings of MIR’10,Philadelphia,USA,2010:91-100. 被引量:1

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部