期刊文献+

基于视觉词典和位置敏感哈希的图像检索方法

Image retrieval based on visual vocabulary and locality sensitive hashing
下载PDF
导出
摘要 当前视觉词袋(Bag of Visual Word,Bo VW)模型中的视觉词典均由k-means及其改进算法在原始局部特征描述子上聚类生成,但随着图像数据的迅速增长,在原始局部特征空间中进行聚类存在着运行时间较长和占用内存较大的问题.针对着这些问题,提出了一种基于视觉词典和位置敏感哈希的图像检索方法.首先,选择合适的生成二进制哈希码的哈希算法,将局部特征点保持相似性地映射为二进制哈希码.然后,在二进制哈希码上进行k-means,生成视觉词为二进制码的视觉词典.最后,用视觉单词的词频向量表示图像内容,根据词频向量对图像进行检索.在SIFT-1M和Caltech-256数据集上的实验结果表明,本方法可以缩短视觉词典生成的时间,占用更少的存储空间,与传统的基于k-means的视觉词典算法相比,图像检索性能基本不变. Currently, visual vocabulary in the bag of visual word( BoVW) model is often generated either by the k-means algorithm or its improved algorithms based on original local features, but with the increasing amount of image data, clustering in the original local feature space have the problem of long running time and large memory occupation. For these problems, we propose an image retrieval method based on visual vocabulary and locality sensitive hashing. Firstly, we select an appropriate binary hashing algorithm, which map the similar local feature points onto similar binary hash codes. Second, we play k-means on the binary hash codes and generate the visual vocabulary with binary visual word. Finally, the image is represented with the word frequency vector of visual words, and image retrieval is achieved based on the word frequency vector. Experimental results on SIFT-1 M and Caltech-256 data sets show that the pro-posed method can reduce the visual vocabulary generation time and take up less storage space. Compared with the traditional image retrieval based on k-means, the image retrieval performance is almost the same.
出处 《河南工程学院学报(自然科学版)》 2016年第3期64-68,共5页 Journal of Henan University of Engineering:Natural Science Edition
基金 国家自然科学基金(61301232)
关键词 二进制哈希码 视觉词袋模型 局部特征 二进制视觉词典 图像检索 binary hashing code bag of visual word model local feature binary visual vocabulary image retrieval
  • 相关文献

参考文献18

  • 1DAVID G, LOWE. Distinctive image features from scale-invariant key points [J]. International Journal of Computer Vision, 2004,60(2) : 91 -110. 被引量:1
  • 2DALAL N,TRIGGS B. Histograms of oriented gradients for human detection[C] / / Computer Vision and Pattern Recognition, SanDiego, CA : IEEE ,2005 : 886 - 893. 被引量:1
  • 3SIVIC J , ZISSERMAN A. Video Google: a text retrieval approach to object matching in videos [C] //Proceedings of 9th IEEEInternational Conference on Computer Vision,Nice:IEEE,2003 : 1470 -1477. 被引量:1
  • 4FRANK M,ERIC N, FREDERIC J. Randomized clustering forests for image classification [J]. Pattern Analysis and MachineIntelligence, IEEE Transaction on Pattern Analysis and Machine Intelligence,2008,30(9) :1632 - 1646. 被引量:1
  • 5MU Y D,SUN J,T0NY X ,et al. Randomized locality sensitive vocabularies for bag-of-features model[C] //European Conferenceon Computer Vision,Heraklion Crete:FORTH,2010:748 -761. 被引量:1
  • 6DATAR M,IMMORLICA N,INDYK P,et al. Locality sensitive hashing scheme based on p-stable distributions[C] //Proceedingsof the ACM Symposium on Computational Geometry,New York:ACM,2004 :253 -262. 被引量:1
  • 7赵永威,李弼程,彭天强,高毫林.一种基于随机化视觉词典组和查询扩展的目标检索方法[J].电子与信息学报,2012,34(5):1154-1161. 被引量:9
  • 8ZHANG L,ZHANG Y D,ZHANG D M ,et al. Distribution-Aware Locality Sensitive Hashing[M]. Berlin: Springer - Verlag BerlinHeidelberg,2013 :395 -406. 被引量:1
  • 9KONG W H,LI W J. Isotropic hashing[C] / / Advances in neural information processing systems,Lake Tahoe:NIPS Foundation,2012:1646 -1654. 被引量:1
  • 10YAIR W, ANTONIO T,R0B F. Spectral Hashing[C] / / Advances in neural information processing systems, Vomcouver, BC :NIPS Foundation,2009: 1753 -1760. 被引量:1

二级参考文献20

  • 1Lowe D G.Distinctive image features from scale-invariantkeypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 2Sivic J and Zisserman A.Video Google:a text retrievalapproach to object matching in videos[C].Proceedings of 9thIEEE International Conference on Computer Vision,Nice,2003:1470-1477. 被引量:1
  • 3Jurie F and Triggs B.Creating efficient codebooks for visualrecognition[C].Proceedings of International Conference onComputer Vision,Beijing,2005:604-610. 被引量:1
  • 4Canada Idée Inc.Reverse image search system.http://www.tineye.com[2011-03]. 被引量:1
  • 5Google Company.Google goggles.http://www.google.com/mobile/goggles/[2011-03]. 被引量:1
  • 6Nister D and Stewenius H.Scalable recognition with avocabulary tree[C].Proceedings of IEEE Conference onComputer Vision and Pattern Recognition,New York,2006:2161-2168. 被引量:1
  • 7Philbin J,Chum O,Isard M,et al..Object retrieval withlarge vocabularies and fast spatial matching[C].IEEEConference on Computer Vision and Pattern Recognition.Minneapolis,June 17-22,2007:1-8. 被引量:1
  • 8Cao Yang,Wang Chang-hu,Li Zhi-wei,et al..Spatial-bag-of-features[C].IEEE Conference on Computer Visionand Pattern Recognition,San Francisco,USA,2010:3352-3359. 被引量:1
  • 9Marée R,Denis P,Wehenkel L,et al..Incremental indexingand distributed image search using shared randomizedvocabularies[C].Proceedings of MIR’10,Philadelphia,USA,2010:91-100. 被引量:1
  • 10Van Gemert J C,Snoek M,et al..Comparing compactcodebooks for visual categorization[J].Computer Vision andImage Understanding,2010,114(4):450-462. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部