期刊文献+

采用高斯混合模型及树结构的立体匹配算法 被引量:4

Stereo matching algorithm based on Gaussian mixture model and tree structure
下载PDF
导出
摘要 针对传统立体匹配算法无法同时为图像边缘和低纹理区域提供一个合适大小的聚合窗口而导致匹配精度较低的难题,提出一种结合高斯混合模型及最小生成树结构的立体匹配算法。通过图像初始视差、像素颜色及距离信息将图像分为初始若干区域及待分割候选像素;基于高斯混合模型并行迭代更新各区域参数,得到最终的分割;在各分割上建立最小生成树计算聚合值求取视差;通过邻域内的有效视差修正误匹配点,获取精度较高的稠密视差图。与其他算法相比,该算法能有效降低误匹配率,尤其在深度不连续区域的匹配效果显著改善。 As traditional stereo matching algorithms cannot provide an appropriate size aggregate window for image edgesand low texture regions at the same time,an improved stereo matching algorithm is proposed,which is based on Gaussianmixture model and minimum spanning tree structure.The image is divided into the several initial regions and the candidatepixels to be segmented as the first step,which is obtained by the pixel color and the distance information,togetherwith the initial disparity.The Gaussian mixture model,which is run in parallel,is secondly leveraged to get the final segmentationby updating the parameters of each region iteratively.Then,a minimum spanning tree is built on each segmentto obtain the disparity.Finally,a high precision dense disparity map is obtained by correcting the mismatch of valid disparityfrom the neighbors.Compared to other algorithms proposed in the literature,this algorithm provides substantial precisionimprovement,especially in the depth discontinuity region.
作者 陈卉 胡立坤 黄钰雯 CHEN Hui;HU Likun;HUANG Yuwen(College of Electrical Engineering, Guangxi University, Nanning 530004, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第20期195-200,共6页 Computer Engineering and Applications
基金 国家自然科学基金地区基金(No.61561005) 广西科技攻关项目(No.桂科攻1598008-1)
关键词 图像处理 立体匹配 高斯混合模型 最小生成树 视差求精 image processing stereo matching Gaussian mixture model minimum spanning tree disparity refinement
  • 相关文献

参考文献2

二级参考文献31

  • 1Scharstein D, Szeliski R.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J].lnter- national Journal of Computer Vision, 2002,47( 1/3 ) : 7-42. 被引量:1
  • 2McDonnell M J.Box-filtering techniques[J].Computer Graphics and Image Processing, 1981,17( 1 ) :65-70. 被引量:1
  • 3Yoon K J,Kweon I S.Adaptive support-weight approach for correspondence search[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(4) : 650-656. 被引量:1
  • 4Rhemann C, Hosni A, Bleyer M, et al.Fast cost-volume filtering for visual correspondence and beyond[C]//2011 IEEE Conference on Computer Vision and Pattern Re- cognition (CVPR), 2011 : 3017-3024. 被引量:1
  • 5Yang Q.A non-local cost aggregation method for stereo matching[C]//2012 1EEE Conference on Computer Vision and Pattern Recognition ( CVPR), 2012 : 1402-1409. 被引量:1
  • 6Mei X, Sun X, Dong W,et al.Segment-tree based cost aggregation for stereo matching[C]//2013 IEEE Confer- ence on Computer Vision and Pattern Recognition (CVPR) ,2013:313-320. 被引量:1
  • 7Ma Z, He K, Wei Y,et al.Constant time weighted median filtering for stereo matching and beyond[C]//ICCV,2013. 被引量:1
  • 8Zhang K,Fang Y,Min D,et al.Cross-scale cost aggrega- tion for stereo matching[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014. 被引量:1
  • 9Milanfar P.A tour of modern image filtering: new insights and methods, both practical and theoretical[J].IEEE Sig- nal Processing Magazine, 2013,30 ( 1 ) : 106-128. 被引量:1
  • 10He K, Sun J, Tang X.Guided image filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2013,35(6) : 1397-1409. 被引量:1

共引文献6

同被引文献38

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部