期刊文献+

融合多特征表示和超像素优化的双目立体匹配 被引量:8

Binocular Stereo Matching with Multi-feature Representation and Super-pixel Optimization
下载PDF
导出
摘要 针对目前许多局部双目立体匹配方法在缺乏纹理区域、遮挡区域、深度不连续区域匹配精度低的问题,提出了基于多特征表示和超像素优化的立体匹配算法。通过在代价计算步骤中加入边缘信息特征,与图像局部信息代价相融合,增加了在视差计算时边缘区域的辨识度;在代价聚合步骤,基于超像素分割形成的超像素区域,利用米字骨架自适应搜索,得到聚合区域,对初始代价进行聚合;在视差精化步骤利用超像素分割信息,对匹配错误视差进行修正,提高匹配精度。基于Middlebury立体视觉数据集测试平台,与自适应权重AD-Census、FA等方法得出的视差图进行比较,该算法在深度不连续区域和缺乏纹理区域的匹配效果显著改善,提高了立体匹配精度。 Aiming at the accuracy problems in texture lacking region,occlusion region and depth discontinuous in binocular stereo matching,an algorithm based on multi-feature representation and super-pixel optimization is proposed.By adding edge information into initial cost calculating,and combining with image local information,it can improve the edge region recognition in disparity calculation.In cost aggregation step,the initial aggregation region is computed by simple linear iterative clustering method.In order to aggregate much more information in texture lacking region,an algorithm of adaptive searching based on the rice skeleton is proposed.In disparity optimization step,using the initial super-pixel region,to correct disparities which are mismatched.Experiments on the Middlebury stereoscopic dataset test platform prove that the proposed algorithm has higher accuracy.
作者 郭倩 张福杨 孙农亮 GUO Qian;ZHANG Fuyang;SUN Nongliang(College of Electronic Communication and Physics,Shandong University of Science and Technology,Qingdao,Shandong 266590,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第1期216-223,共8页 Computer Engineering and Applications
关键词 双目立体匹配 多特征表示 超像素分割 超像素优化 机器视觉 binocular stereo matching multi-feature representation super-pixel segmentation super-pixel optimization computer vision
  • 相关文献

参考文献11

二级参考文献73

  • 1宋毅,崔平远,居鹤华.一种图像匹配中SSD和NCC算法的改进[J].计算机工程与应用,2006,42(2):42-44. 被引量:29
  • 2王年,范益政,鲍文霞,韦穗,梁栋.基于图割的图像匹配算法[J].电子学报,2006,34(2):232-236. 被引量:27
  • 3刘宝生,闫莉萍,周东华.几种经典相似性度量的比较研究[J].计算机应用研究,2006,23(11):1-3. 被引量:44
  • 4NALPANTIDIS L, GASTERATOS A. Stereo vi- sion for robotic applications in the presence of non- ideal lighting conditions [J]. Image and Vision Computing, 2010,17(2) :1172-1180. 被引量:1
  • 5CRANE C D. Development of an integrated sensor system for obstacle detection and terrain evaluation for application to unmanned ground vehicles[J]. Unmanned Ground Vehicle Technology VII , 2005 ,5084 (10) : 156-165. 被引量:1
  • 6SCHARSTEIN D, SZELISKI R. A taxonomy and e- valuation of dense two frame stereo correspondence al- gorithms [J] . Int J of Computer Vision , 2002 , 47 (1):42-72. 被引量:1
  • 7CASSISA C. Local vs global energy minimization methods: application to stereo matching[J]. PIC, 2010,21(1) :4211-4221. 被引量:1
  • 8白明 庄严 王伟.采用多级动态规划实现立体匹配.光学精密工程,2008,:722-729. 被引量:1
  • 9GUPTA R, CHO S Y. Real-time stereo matching using adaptive binary window[J]. DPVT, 2010,28 (2) :422-432. 被引量:1
  • 10YOON K J. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions On Pattern Analysis And Machine Intelligence, 2006, 28(4) .-650-657. 被引量:1

共引文献92

同被引文献75

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部