期刊文献+

大场景深度范围下的角度校验立体匹配算法 被引量:1

Stereo Matching Algorithm Based on Angle Check for Large Scene Depth Range
下载PDF
导出
摘要 针对三维扫描系统开发过程中遇到的大场景深度范围下标志点误匹配率较高的问题,对基于单应性约束的双目立体匹配算法进行研究,从理论上推导出匹配误差与场景深度和工作距离比值间的数学关系,明确该算法的适用条件。为提高场景深度与工作距离比值较大时的匹配正确率,提出一种基于角度校验的双目立体匹配算法,首先通过极线约束获得初始匹配点对,然后通过计算角差异度校验得到最终正确匹配点对,实验表明所提出的方法能够达到良好的匹配效果。 Aiming at the problem of marker mismatching increasing in large scene depth range during the development of three-dimensional scanning system,the stereo matching algorithm based on homography constraint is studied.The mathematical relationship between matching error and the ratio of scene depth to working distance is deduced theoretically,and the applicable conditions of the algorithm are clarified.In order to improve the matching accuracy when the ratio of scene depth to working distance is large,a stereo matching algorithm based on angle checking is proposed.First,the initial matching point pairs are obtained by epipolar constraint,and then the correct final matching point pairs are obtained by angle difference checking.Experiments show that the proposed method can achieve better matching effect.
作者 王贺迎 张明志 郭京 周静 李鹏 张于 王顺 WANG He-ying;ZHANG Ming-zhi;GUO Jing;ZHOU Jing;LI Peng;ZHANG Yu;WANG Shun(Beijing Oriental Institute of Metrology and Test,Beijing 100094;China Academy of Space Technology,Beijing 100094;Beijing Institute of Space Mechanics&Electricity,Beijing 100094;Hehai Construction Technology Group Co.LTD,Shanghai 200080)
出处 《宇航计测技术》 CSCD 2019年第6期7-13,25,共8页 Journal of Astronautic Metrology and Measurement
关键词 光学测量 立体匹配 单应性 极线约束 机器视觉 Optical measurement Stereo matching Homography Epipolar constraint Machine vision
  • 相关文献

参考文献8

二级参考文献61

  • 1陈维明,高明顺,陈维南.一种摄像机内外参数的校准方法[J].东南大学学报(自然科学版),1993,23(4):105-108. 被引量:1
  • 2R Hartley,A Zisserman.Multiple view geometry in computer vision [M].Cambridge University Press,2000. 被引量:1
  • 3Z Zhang,R Deriche,O Faugeras.A robust technique for matching two uncalibrated images trought the unknown epipolar geometry [R].Report of research.France:INRIA,1994,2273. 被引量:1
  • 4C Harris,M Stephens.A combined corner and edge detector [C]//Proc.of 4th Alvey Vision Conf.Manchester.England.Manchester University Press,1988.189-192. 被引量:1
  • 5M Fischler,R Bolles.Random sample consensus:a paradign for model fitting with application to image analysis and automated cartography [J].Communications of the ACM,1981.24(6):381-395. 被引量:1
  • 6Q T Luong,R Deriche,O Faugeras.On determining the fundamental matrix:analysis of different methods and experimental results [R].Report of research.France:INRIA,1993,1894. 被引量:1
  • 7PHILBIN J, CHUM O, ISARD M, et al. Object retrieval with large vocabularies and fast spatial matching[ C]// IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Soeiety, 2007:1 -8. 被引量:1
  • 8MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors[ J]. International Journal of Computer Vision, 2004, 60(1) : 63 - 86. 被引量:1
  • 9HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[ M]. 2rid ed. Cambridge: Cambridge University Press, 2003. 被引量:1
  • 10FISCHLER M A, BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[ J]. Communications of the Association for Computing Machinery, 1981,24(6) : 381 - 395. 被引量:1

共引文献90

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部