期刊文献+

基于改进Census变换与多特征融合的立体匹配算法 被引量:3

Stereo Matching Algorithm Based on Improved Census Transform and Multi-Feature Fusion
原文传递
导出
摘要 立体匹配是三维重建技术中的关键步骤,针对局部立体匹配算法在弱纹理区域、深度不连续区域匹配效果差,且容易受到噪声干扰的问题,提出了一种基于多特征融合的局部立体匹配算法。对传统的Census变换进行改进,使其对噪声具有更强的鲁棒性,并将其与颜色特征、梯度特征相融合进行代价计算;采用多尺度下的引导滤波算法进行代价聚合,并通过视差计算与优化得到视差图。在Middlebury数据集上的实验结果表明,所提算法抗噪能力强,且与当前较为优秀的局部立体匹配算法相比,匹配精度有了进一步提升。 In the threedimensional reconstruction technology,stereo matching is a key step.Aiming at the problem that local stereomatching algorithms have poor matching effects in areas with weak texture and discontinuous depth and are easily disturbed by noise,a local stereomatching algorithm based on multifeature fusion is proposed.The traditional Census transform is improved to make it more robust to noise and is fused with color features and gradient features for cost calculation;the multiscale guided filtering algorithm is used for cost aggregation,and the disparity map is obtained through disparity calculation and optimization.The experimental results on the Middlebury dataset show that the proposed algorithm has strong antinoise ability,and the matching accuracy is further improved when compared with the current excellent local stereomatching algorithms.
作者 虞文杰 叶嵩 郭毓 郭健 Yu Wenjie;Ye Song;Guo Yu;Guo Jian(School of Automation,Nanjing University of Science&Technology,Nanjing,Jiangsu 210094,China;The Third Construction Co.,Ltd.of China Construction Eighth Engineering Division,Nanjing,Jiangsu 210023,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2022年第8期147-153,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61973167) 江苏省建设系统科技项目(指导类)(2019ZD001252,2019ZD001244)。
关键词 图像处理 立体匹配 Census变换 多特征融合 引导滤波 image processing stereo matching Census transform multifeature fusion guide filter
  • 相关文献

参考文献6

二级参考文献54

  • 1刘正东,杨静宇.自适应窗口的时间规整立体匹配算法[J].计算机辅助设计与图形学学报,2005,17(2):291-294. 被引量:12
  • 2Scharstein D, Szetiski R. A taxonomy and evaluation of dense two- frame stereo correspondence algorithms [ J ]. International Journal of Computer Vision ,2002,47 ( 1/2/3 ) : 7 -42. 被引量:1
  • 3Nalpantidis L, Gasteratos A. Stereo vision for robotic applications in the presence of non-ideal lighting conditions [ J ]. Image and Vision Computing,2010,28(6) :940-951. 被引量:1
  • 4Bslaban T. S., Goddard R., Linke Schaetzel M. et al.. J. Am. Chem. Soc.[J], 2003, 125: 4 233-4 239 被引量:2
  • 5Hasobe T., Imahori H., Yamada H. et al.. Nano. Letters[J], 2003, 3: 409-412 被引量:2
  • 6Okura I.. J. Porphyrins and Phthalocyanines[J], 2002, 6: 268-270 被引量:2
  • 7Campestrini S., Tonellato U.. Euro. J. Org. Chem.[J], 2002, 22: 3 827-3 832 被引量:2
  • 8Odobel F., Blart E., Lagree M. et al.. J. Materials Chemistry[J], 2003, 13: 502-510 被引量:2
  • 9Paolesse R., Valli L., Goletti C. et al.. Materials Sci. Eng. C[J], 2002, 22: 219-225 被引量:2
  • 10Scharstein D, Szeliski R.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J].lnter- national Journal of Computer Vision, 2002,47( 1/3 ) : 7-42. 被引量:1

共引文献47

同被引文献28

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部