期刊文献+

基于深度信念网络的在线视频热度预测 被引量:7

Deep belief networks based popularity prediction for online video services
下载PDF
导出
摘要 针对在线视频热度预测研究中分类及预测效果欠佳,规则化较多和较缺乏实践检验等问题,通过对实际在线视频服务系统所采集的海量数据研究,提出一种基于深度信念网络(Deep Belief Networks,DBNs)的视频热度预测方法。首先,结合社交网络的关注度和视频关键词的搜索热度,对影响因子进行了建模和量化处理;其次,根据输入和输出变量确定了DBNs各层网络的结构,优化了网络参数和预测模型;最后,通过在线视频服务商的数据对深度信念网络进行训练,并多次交叉实验对比分析,结果表明基于DBNs方法在视频热度预测上准确率最高79.47%(国内视频)、65.33%(国外视频),可以为在线视频上映前的投资、宣传以及风险评估提供较全面可靠的参考决策。 Concerning the issue of traditional prediction model,this paper proposes a Deep Belief Networks(DBNs)based approach to predict the popularity of online videos.By modeling users’attention with the information extracted from social network and search engine,it studies its feature selection method and the optimization of DBN’s parameters.Based on the data collected from one large-scale online video service provider,it implements experiments to evaluate the proposed approaches.The results show that DBN-based prediction obtains the highest performance up to79.47%(for domestic TV drama)and65.33%(for foreign TV drama).The prediction strategy can help provide decision-making information for risk assessment,publicity affair,and investment of online videos.
作者 陈亮 张俊池 王娜 李霞 陈宇环 CHEN Liang;ZHANG Junchi;WANG Na;LI Xia;CHEN Yuhuan(Shenzhen Key Lab of Advanced Communications and Information Processing, College of Information Engineering,Shenzhen University, Shenzhen, Guangdong 518060, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第9期162-169,189,共9页 Computer Engineering and Applications
基金 国家自然科学基金(No.61502315,No.61309030) 广东省自然科学基金(No.2015A030310366) 深圳大学科研启动项目(No.201558) 深圳市基础研究计划项目(No.JC201105170613A,No.ZYC2010060901206)
关键词 深度学习 在线视频服务 热度预测 深度信念网络 受限玻尔兹曼机 deep learning online video service popularity prediction deep belief network restricted Boltzmann machine
  • 相关文献

参考文献1

二级参考文献39

  • 1叶世伟,史忠植.神经网络原理[M].北京:机械工业出版社,2006. 被引量:3
  • 2Haykin S. Neural Networks and Learning Machines (3rd Edition) [M]. New Jersey: Pearson Education, 2009. 被引量:1
  • 3Hinton G E, Sejnowski T J. Learning and relearning in Boltzmann machines[C]// Parallel Distributed Processing: Explorations in the Microstructure of Cognition,Cambridge, USA, 1986. 被引量:1
  • 4Smolensky P. Information processing in dynamical systems: foundations of harmony theory[C]// Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Cambridge, USA, 1986. 被引量:1
  • 5Freund Y, Haussler D. Unsupervised learning of distributions on binary vectors using two layer networks[R]. Santa Cruz: University of California, UCSC-CRL-94-25, 1994. 被引量:1
  • 6Roux N L, Bengio Y. Representational power of restricted Boltzmann machines and deep belief networks[J]. Neural Computation, 2008,20(6): 1631-1649. 被引量:1
  • 7Hinton G E. Training products of experts by minimizing contrastive divergence [J]. Neural Computation, 2002, 14(8): 1771-1800. 被引量:1
  • 8Cho K Y. Improved learning algorithms for restricted Boltzmann machines[D]. Espoo: Aalto University,2011. 被引量:1
  • 9Teh Y W, Hinton G E. Rate-coded restricted Boltzmann machines for face recognition[C]// Advances in Neural Information Processing Systems 13, MIT Press, 2001: 908-914. 被引量:1
  • 10Salakhutdinov R, Mnih A, Hinton G E. Restricted Boltzmann machines for collaborative filtering[C]// Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR, 2007: 791-798. 被引量:1

共引文献101

同被引文献78

引证文献7

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部