期刊文献+

受限波尔兹曼机 被引量:102

Restricted Boltzmann Machines
下载PDF
导出
摘要 受限波尔兹曼机(restricted Boltzmann machines,RBM)是一类具有两层结构、对称连接且无自反馈的随机神经网络模型,层间全连接,层内无连接.近年来,随着RBM的快速学习算法一对比散度的出现,机器学习界掀起了研究RBM理论及应用的热潮.实践表明,RBM是一种有效的特征提取方法,用于初始化前馈神经网络可明显提高泛化能力,堆叠多个RBM组成的深度信念网络能提取更抽象的特征.鉴于RBM的优点及其在深度学习中的广泛应用,本文对RBM的基本模型、学习算法、参数设置、评估方法、变形算法等进行了详细介绍,最后探讨了RBM在未来值得研究的方向. A restricted Boltzmann machine (RBM) is a particular type of random neural network model which has two-layer architecture, symmetric connections and no self-feedback. The two layers in an RBM are fully connected but there are no connections within the same layer. Recently, with the advent of a fast learning Mgorithm for RBMs (i.e., contrastive divergence), the machine learning community set off a surge to study the theory and applications of RBMs since it has many advantages. For example, a RBM provides us an effective tool to detect features. When a feed-forward neural network is initialized with an RBM, its generalization capability can be significantly improved. A deep belief network composed of several RBMs can detect more abstract features. Due to the advantages and wide applications of RBMs in deep learning, this paper attempts to provide a introductory guide for novice. It presents a detailed introduction of basic RBM model, its representative learning algorithm, parametric settings, evaluation methods, its variants and etc. Finally, some research directions of RBMs that are deserved to be further studied are discussed.
出处 《工程数学学报》 CSCD 北大核心 2015年第2期159-173,共15页 Chinese Journal of Engineering Mathematics
基金 国家重点基础研究发展计划973项目(2013CB329406) 国家自然科学基金重大研究计划(91230101) 国家自然科学基金(11201367) 中央高校基本科研业务费专项基金(xjj2011048)~~
关键词 机器学习 深度学习 受限波尔兹曼机 对比散度 GIBBS采样 machine learning deep learning restricted Boltzmann machine contrastive divergence Gibbs sampling
  • 相关文献

参考文献41

  • 1叶世伟,史忠植.神经网络原理[M].北京:机械工业出版社,2006. 被引量:3
  • 2Haykin S. Neural Networks and Learning Machines (3rd Edition) [M]. New Jersey: Pearson Education, 2009. 被引量:1
  • 3Hinton G E, Sejnowski T J. Learning and relearning in Boltzmann machines[C]// Parallel Distributed Processing: Explorations in the Microstructure of Cognition,Cambridge, USA, 1986. 被引量:1
  • 4Smolensky P. Information processing in dynamical systems: foundations of harmony theory[C]// Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Cambridge, USA, 1986. 被引量:1
  • 5Freund Y, Haussler D. Unsupervised learning of distributions on binary vectors using two layer networks[R]. Santa Cruz: University of California, UCSC-CRL-94-25, 1994. 被引量:1
  • 6Roux N L, Bengio Y. Representational power of restricted Boltzmann machines and deep belief networks[J]. Neural Computation, 2008,20(6): 1631-1649. 被引量:1
  • 7Hinton G E. Training products of experts by minimizing contrastive divergence [J]. Neural Computation, 2002, 14(8): 1771-1800. 被引量:1
  • 8Cho K Y. Improved learning algorithms for restricted Boltzmann machines[D]. Espoo: Aalto University,2011. 被引量:1
  • 9Teh Y W, Hinton G E. Rate-coded restricted Boltzmann machines for face recognition[C]// Advances in Neural Information Processing Systems 13, MIT Press, 2001: 908-914. 被引量:1
  • 10Salakhutdinov R, Mnih A, Hinton G E. Restricted Boltzmann machines for collaborative filtering[C]// Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR, 2007: 791-798. 被引量:1

二级参考文献70

  • 1LU C,ZHOU J,SHEN L,et al.Techniques for enhancingpervasive learning in standard natural classroom[C].HybridLearning and Education-First International Conference,2008:202-212. 被引量:1
  • 2Johannes Wagner,Jonghwa Kim,Elisabeth Ander.From physiologicalsignals to emotions:Implementing and selected method for feature ex-traction and classification[C].IEEE International Conference on Multi-media and Expo,2005:940-943. 被引量:1
  • 3Heraz A,Razaki R,Frasson C.Using machine learning to predictlearner emotional state from brainwaves[C].Seventh IEEE Interna-tional Conference on Advanced Learning Technologies,2008. 被引量:1
  • 4Burleson W.Affective learning companions:Strategies for em-pathetic agents with real-time multimodal affective sensing forfoster meta-cognitive and meta-affective approaches to leaning,motivation and perseverance[D].MIT PhD Thesis,2006. 被引量:1
  • 5Picard R W.Future affective technology for autism and emotioncommunication[J].Philosophical Transactions of the RoyalSociety BBiological Sciences,2009,364(1535):3575-3584. 被引量:1
  • 6Hinton G E,Salakhudinov R R.Reducing the dimensionalityof data with neutral networks[J].Scinence,2006,313(5786):504-507. 被引量:1
  • 7Paiva A,Prada R,Picard R W.Affective computing and intel-ligent interaction[C].Proceedings Second International Con-ference,2007. 被引量:1
  • 8Tieleman T.Training restricted Boltzmann machines using ap-proximations to the likelihood gradient[C].Proceedings of the25th International Conference on Machine Learning,2008:1064-1071. 被引量:1
  • 9Memisevic R,Hinton G E.Learning to represent spatialtransformations with factored higher-order Boltzmann ma-chines[J].Neural Computation,2010,22(6):1473-1492. 被引量:1
  • 10Larochelle H,Erhan D,Courville A,et al.An empiricalevaluation of deep architectures on problems with many factorsof variation[C].Proceedings of the 24th International Con-ference on Machine Learning,2007:2797. 被引量:1

共引文献76

同被引文献684

引证文献102

二级引证文献804

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部