期刊文献+

基于谱聚类的图像分割特性分析

下载PDF
导出
摘要 谱聚类是近年来国内外进行聚类分析的新的研究热点。谱聚类的优势在于不对数据的全局结构作假设,具有识别非凸分布聚类的能力。文章介绍了该算法的基本理论,深入分析了其聚类本质,然后由图像分割实验验证,并给出它的适用范围。
出处 《中国集体经济》 2011年第4S期198-199,共2页 China Collective Economy
  • 相关文献

参考文献14

  • 1靳华中,周祺,刘智华.云模型和谱聚类的图像分割特性分析[J].软件导刊,2010,9(12):201-203. 被引量:4
  • 2蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18. 被引量:189
  • 3李宏宇.谱学习与聚类的研究与应用[D]复旦大学,复旦大学2008. 被引量:1
  • 4M.G.H.Omran,Andries P.Engelbrecht,A.Salman.An overview of clustering methods. Intelligent Data Analysis . 2007 被引量:1
  • 5M.Polito,P.Perona.Grouping and dimensionality reduction by locally lin-ear embedding. Neural Information pro-cessing Systems . 2001 被引量:1
  • 6Andrew Y.Ng,,Jordan M.I.,Weiss Y.On spectral clustering:Analysis and an al-gorithm. NIPS2001 . 被引量:1
  • 7Bach F R,,Jordan MI.Learning spectral clustering. Advances in Neural Information Processing Systems(NIPS) . 2004 被引量:1
  • 8Shi J,Malik J.Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2000 被引量:1
  • 9Georgescu B,Shimshoni I,Meer P.Mean shift based clustering in high dimensions:a texture classification example. Proceedings of the 9th IEEE International Conference on Computer Vision (ICCV’03) . 2003 被引量:1
  • 10Jain AK,Murty MN,Flynn PJ.Data clustering: a review. ACM Computing Surveys . 1999 被引量:1

二级参考文献28

  • 1Jain A, Murty M, Flynn P. Data clustering.. A Review[J]. ACM Computing Surveys, 1999,31 (3) : 264-323. 被引量:1
  • 2Fiedler M. Algebraic connectivity of graphs. Czech, Math. J. , 1973,23: 298-305. 被引量:1
  • 3Malik J,Belongie S,Leung T, et al. Contour and texture analysis for image segmentation In Perceptual Organization for Artificial Vision Systems. Kluwer, 2000. 被引量:1
  • 4Weiss Y. Segmentation using eigenvectors: A unified view//International Conference on Computer Vision 1999. 被引量:1
  • 5Shi J,Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) : 888-905. 被引量:1
  • 6Wu Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation [J]. IEEE Trans on PAMI,1993, 15(11):1101-1113. 被引量:1
  • 7Hagen L, Kahng A 13. New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Computer-Aided Design, 1992,11 (9) : 1074-1085. 被引量:1
  • 8Sarkar S, Soundararajan P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22(5) : 504- 525. 被引量:1
  • 9Ding C, He X, Zha H, et al. Spectral Min Max cut for Graph Partitioning and Data Clustering[C]//Proc. of the IEEE Intl Conf. on Data Mining. 2001 : 107-114. 被引量:1
  • 10Meila M , Xu L. Multiway cuts and spectral clustering. U. Washington Tech Report. 2003. 被引量:1

共引文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部