期刊文献+

基于混合粒子PHD滤波的多目标视频跟踪 被引量:2

Mixture Particle PHD Filter Based Multi-Target Visual Tracking
下载PDF
导出
摘要 针对可变数目多目标视频跟踪,粒子滤波不能持续维持目标的多模态分布问题,本文提出一种混合粒子概率假设密度(PHD)滤波的多目标视频跟踪算法.该算法首先用K-means算法对粒子进行空间分布聚类,给各粒子群附加身份标签,使各粒子群分别对应混合粒子滤波的各分量,采用相互独立的各分量粒子滤波跟踪各目标,这样提高了目标状态估计的准确性,也能有效维持各目标的多模态分布.实验结果表明,该算法能有效处理新目标出现、合并、分离等多目标跟踪问题. Aiming at the problem that particle filter is poor at consistently maintaining the muhi-modality of the target distributions for multi-targets in a variable number of visual tracking, a multi-target visual tracking approach based on mixture particle probability hypothesis density (PHD) filter is proposed. The particles are clustered by the K-means algorithm, the classified particles are labeled and the particle filters are separately used for each classified particles. It improves the accuracy of target states estimation and effectively maintains the multi-modal distribution of the various objectives. The experimental results show that the proposed approach is an effective solution to the appearance, merger, separation and other multi-target tracking problems for the new target.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第9期885-890,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61170126) 江苏省科技支撑项目(No.BE2011156) 江苏省自然科学基金项目(No.BK2011521)资助
关键词 混合粒子滤波器 概率假设密度 多目标跟踪 多模态分布 Mixture Particle Filter, Probability Hypothesis Density, Multi-Target Tracking, Muhi-Modal Distribution
  • 相关文献

参考文献3

二级参考文献36

  • 1王华伟,李翠华,施华,韦凤梅.基于HSV空间和一阶梯度的阴影剪除算法[J].计算机工程与应用,2005,41(8):43-44. 被引量:6
  • 2张鹏,王润生.静态图像中的感兴趣区域检测技术[J].中国图象图形学报(A辑),2005,10(2):142-148. 被引量:32
  • 3代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 4Dubuisson M P, Jain A K. Contour extraction of moving objects in complex outdoor scenes [J]. International Journal of Computer Vision, 1995, 14(1): 83-105. 被引量:1
  • 5Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (11) : 1254-1259. 被引量:1
  • 6Fisher R. CAVIAR test case scenarios lOLl. (2007- 10- 26) [2008-09- 28]. http://groups, inf. ed. ac. uk/vision l/ CAVIAR/CAV1ARDATA1. 被引量:1
  • 7Walther D, Rutishauser U, Koch C, etal. On the usefulness of attention for object recognition[C]//Proceedings of the 2nd International Workshop on Attention and Performance in Computational Vision at ECCV, Prague, 2004:96-103. 被引量:1
  • 8Bonaiuto J J, Itti L Combining attention and recognition for rapid scene analysis [C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, 2005:1-6. 被引量:1
  • 9Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry [J]. Human Neurobiology, 1985, 4(4):219-227. 被引量:1
  • 10Collins R T. Mean-shift blob tracking through scale space [C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, 2003:234-240. 被引量:1

共引文献46

同被引文献25

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部