期刊文献+

Adaboost检测和混合粒子滤波融合的多目标跟踪 被引量:4

Multi-target tracking of Adaboost detection combining with hybrid particle filtering
原文传递
导出
摘要 针对多目标跟踪时因存在很多不确定性因素,而导致粒子滤波不能有效处理多模式的增长问题,首先,提出一种混合粒子滤波跟踪方法,通过混合权值的计算实现粒子间的相互关联,能有效地保持和处理多模式问题;其次,为了提高算法对数目变化的多目标跟踪处理能力,在混合粒子滤波跟踪算法中,又融入了Ada-boost检测算法,用动态模型和Adaboost检测信息合并成的混合观测模型构造似然函数,实现了一种能学习、检测和跟踪感兴趣目标的跟踪系统;最后,在刚性、非刚性以及数目变化的多目标视频序列中对算法进行测试,结果表明算法对数目变化的多目标能实现有效跟踪. To reduce the uncertainties of multi-target tracking,a hybrid particle filter method was proposed.The interconnection was realized among particles through the calculation of hybrid weights,which could effectively maintain and deal with multi-mode problems.Secondly,in order to improve the mul-targets tracking processing ability of the algorithm when the number of multi-target changed,the Adaboost detection algorithm was integrated into hybrid filter tracking algorithm.Likelihood function was constructed through hybrid measurement model which was merged between the dynamic model and Adaboost detection.Then a tracking system to learn,detect and track interesting target was realized.Finally,the algorithm was tested in multi-target video sequence of a rigid,non-rigid and number-changing.The experiment shows that the algorithm can effectively track multi-targets changing in numbers.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第7期76-81,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 黑龙江省教育厅科学技术研究项目(12531528) 黑龙江省自然科学基金资助项目(QC2011C060) 黑龙江工程学院博士科学研究基金资助项目(2012BJ20)
关键词 图像处理 多目标 跟踪 混合粒子滤波 Adaboost检测 image processing muti-target tracking hybrid particle filtering Adaboost detection
  • 相关文献

参考文献10

  • 1Maroulas V, Stinis P. Improved particle filters for multi-target tracking [J]. Journal of Computational Physics, 2012, 231(2): 602-611. 被引量:1
  • 2Brasnett P A, Mihaylova L, Canagarajab N, et al. Particle filtering with multiple cues for object track- ing[J]. Image and Video Communications and Pro- cessing, 2005, 5685: 430-441. 被引量:1
  • 3Hue C, Le Cadre, Perez P. Tracking multiple objects with particle filtering[J]. IEEE Transactions on Aer- ospace and Electronic Systems, 2002, 38 (3) : 791- 812. 被引量:1
  • 4Hue C, Le Cadre J P, Perez P. Sequential Monte Carlo methods of multiple target tracking and data fusion[J].IEEE Transactions on Signal Processing, 2002, 50(2): 309-325. 被引量:1
  • 5Vermaak J, Doucet A, Perez P. Maintaining multi modality through mixture tracking[C] // Proceedings International Conferenceon Computer Vision(ICCV). Nice: IEEE, 2003: 1950-1954. 被引量:1
  • 6Viola P, Jones M. Robust real-time face detection [J]. International Journal of Computer Vision, 2004, 57(2): 137-154. 被引量:1
  • 7Freund Y, Sehapire R E. A decision theoretic gener- alization of online learning and an application to boos- ting[J]. Journal of Computer and System Science, 1997, 55(1): 119-139. 被引量:1
  • 8Viola P, Jones M. Fast multi-view face detection [R]. Technical reort: Broadway Cambridge, Mit- subishi Electric Research Lab, 2003. 被引量:1
  • 9Tipping M E, Bishop C M. Mixtures of probabilistic principal component tipping[J]. Neural Computation Analyzers, 1999, 11(2): 443-482. 被引量:1
  • 10Doucet A, de Freitas N, Murphy K, et al. Rao blackwellised filtering for dynamic Bayesian net- works [C]// UAI' 00 Proceddings of the Sixteent Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, 2000:176-183. 被引量:1

同被引文献28

  • 1刘士荣,姜晓艳.一种改进的Camshift/Kalman运动目标跟踪算法[J].控制工程,2010,17(4):470-474. 被引量:10
  • 2孙妍,鲁涤强,陈启军.一种基于强跟踪的改进容积卡尔曼滤波器[J].华中科技大学学报(自然科学版),2013,41(S1):451-454. 被引量:14
  • 3ZHANG G, CHEN J, SU G, et al. Double-pupil location of face images [J ]. Pattern Recognition, 2013, 46(3): 642-648. 被引量:1
  • 4MAROULAS V, STINIS P. Improved particle filters for mulit-target tracking[J]. Journal of Computational Physics, 2012,231(2): 602-611. 被引量:1
  • 5Kalal Z,Mikolajczyk K,Matas J.Face-TLD:tracking-leaming- detection applied to faces[C]//Proceedings of the 17th Interna- tional Conference on Image Processing.Washington DC:IEEE,2010:3789-3792. 被引量:1
  • 6Bay H,Tuytelaars T,Van G L Surf:speeded up robust features [M].Computer Vision-ECCV 2006.Berlin Heidelberg:Spring- er,2006:404-417. 被引量:1
  • 7Chang W C,Cho C W.Online boosting for vehicle detection [J].IEEE Transactions on Systems Man and Cybemetics-Part B:Cybernetics,2010,3:892-902. 被引量:1
  • 8Wanjale K H,Bhoomkar A,Kulkami A,et al.Use of haar cas- cade classifier for face tracking system in real time video[J].In- ternational Journal of Engineering Research & Technology,2013,4(2):2348-2353. 被引量:1
  • 9Ozuysal M,Calonder M,Lepetit V,et al.Fast keypoint recogni- tion using random fems[J].IEEE Transactions on Pattern Anal- ysis and Machine Intelligence,2010,32(3):448-461. 被引量:1
  • 10Ji Q G,Zhang P,Du J H.Robust vision tracking by online ran- dom fems and template library[J].Signal Processing:Image Communication,2014,29(5):590-598. 被引量:1

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部