期刊文献+

改进谱聚类算法在高等院校人才选拔中的应用

The Application of Improved Spectral Clustering Algorithm on College Talent Selection
下载PDF
导出
摘要 提出一种改进的谱聚类算法,该算法可处理不同密度的任意形状数据集,并将其作用于一个真实的高等院校人力资源数据库,对教师的现状进行了客观有效的描述,为高等院校人才选拔提供了有益的参考. We proposed an improved spectral clustering algorithm which is based on basic spectral clustering and can deal with arbitrary shape dataset with different density. The algorithm is applied to an real college human resource database, and objectively and effectively describes the present conditions of teachers. It can provide a useful reference to the talent selection of a college.
作者 兰洋
机构地区 信阳师范学院
出处 《信阳师范学院学报(自然科学版)》 CAS 2010年第4期614-617,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 河南省教育厅自然科学基础研究计划项目(2010A520033)
关键词 谱聚类 算法 高等院校 人才 选拔 spectral clustering algorithm college talent selection
  • 相关文献

参考文献7

  • 1Fiedler M.Algebraic connectivity of graphs[J].Czechoslovak Mathematical Journal(S0011-4642),1973,23(2):298-305. 被引量:1
  • 2Shi J,Malik J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828),2000,22 (8):888-905. 被引量:1
  • 3蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18. 被引量:189
  • 4王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:95
  • 5Ng A,Jordan M,Weiss Y.On spectral clustering:analysis and an algorithm[C] // Procs of Advances in Neural Information Processing Systems 14,2001:849-856. 被引量:1
  • 6Zelnik-Manor L,Perona P.Self tuning spectral clustering[C] // Procs of Advances in Neural Information Processing Systems 17,2004:1601-1608. 被引量:1
  • 7谷瑞军,叶宾,须文波.一种改进的谱聚类算法[C] // 第二届中国分类技术及应用学术会议,2007:145-149. 被引量:1

二级参考文献42

  • 1Yu SX, Shi J. Segmentation given partial grouping constraints. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(2): 173-183. 被引量:1
  • 2Hertz T, Shental N, Bar-Hillel A, Weinshall D. Enhancing image and video retrieval: Learning via equivalence constraint. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Madison: IEEE Computer Society, 2003.668-674. 被引量:1
  • 3Wagstaff K, Cardie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Brodley CE, Danyluk AP, eds. Proc. of the 18th Int'l Conf. on Machine Learning. Williamstown: Morgan Kaufmann Publishers, 2001. 577-584. 被引量:1
  • 4Klein D, Kamvar SD, Manning CD. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Sammut C, Hoffmann AG, eds. Proc. of the 19th Int'l Conf. on Machine Learning. Sydney: Morgan Kaufmann Publishers, 2002. 307-314. 被引量:1
  • 5Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning. Morgan Kaufmann Publishers, 2000. 1103-1110. 被引量:1
  • 6Zhou D, Bousquet O, Lal TN, Weston J, Scholkopf B. Learning with local and global consistency. In: Thrun S, Saul L, SchSlkopf B, eds. Advances in Neural Information Processing Systems 16. Cambridge: MIT Press, 2004. 321-328. 被引量:1
  • 7Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(8): 888-905. 被引量:1
  • 8Gu M, Zha H, Ding C, He X, Simon H. Spectral relaxation models and structure analysis for k-way graph clustering and bi-clustering. Technical Report, CSE-01-007, Penn State University, 2001. 被引量:1
  • 9Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. In: Dietterich TG, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems (NIPS) 14. Cambridge: MIT Press, 2002, 894-856. 被引量:1
  • 10Meila M, Xu L. Multiway cuts and spectral clustering. Technical Report, 442, University of Washington, 2004. 被引量:1

共引文献274

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部