期刊文献+

基于改进ORB的抗视角变换快速图像匹配算法 被引量:6

Anti-Perceptual Transform Fast Image Matching Algorithm Based on Improved ORB
下载PDF
导出
摘要 针对快速定向二进制描述(ORB)算法误点率高、像素点对对比易受噪声影响同时抗视角变换能力弱等问题,提出基于改进ORB的抗视角变换快速图像匹配算法。该算法在ORB算法的架构下利用加速分割检测算法进行特征提取,并提出特征点加速检测策略,利用改进的二进制鲁棒独立基本特征算法进行特征点描述,同时结合透视变换模型进行图像采样和汉明距离作为相似度量准则进行图像匹配,初匹配后利用网格运动统计算法去除误匹配点。实验表明,本文算法在保持实时性的同时,能够获得较高的匹配精度,和较强的抗视角变换能力,具备较好的工程意义。 Aiming at the problem of oriented fast and rotated brief(ORB)algorithm,such as high false matching rate,pixel points contrastive are susceptible to noise and weak ability of anti-perceptual transformation,this paper proposes anti-perceptual transform fast image matching algorithm based on improved ORB.The algorithm uses the adaptive and generic accelerated segment test algorithm to extract features under the framework of the ORB algorithm,and proposes a feature point acceleration detection strategy.Then the improved binary robust independent elementary features algorithm is used to describe the feature points.At the same time,image sampling combined with perspective transformation model and Hamming distance as similar metrics for image matching. After the initial image matching,the grid-based motion statistics algorithm is used to remove the false matching points.The experiment shows that the proposed algorithm can achieve high matching accuracy and strong ability to anti-perceptual transformation while maintaining real-time performance,and it has a good engineering significance.
作者 左川 庞春江 ZUO Chuan;PANG Chunjiang(Shcool of Control and Computer Engineering,North China Electric Power University,Baoding Hebei 071003,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2018年第11期1714-1720,共7页 Chinese Journal of Sensors and Actuators
基金 中央高校基本业务基金项目(2017MS156)
关键词 计算机视觉 图像匹配 抗视角变换 快速定向二进制描述算法 网格运动统计 computer vision image matching anti-perceptual transformation oriented fast and rotated brief algorithm grid-based motion statistics
  • 相关文献

参考文献7

二级参考文献42

  • 1王红梅,张科,李言俊.图像匹配研究进展[J].计算机工程与应用,2004,40(19):42-44. 被引量:107
  • 2Mikolajczyk K,Schmid C.Scale and affine invariant interest point detectors[J].International Journal of Computer Vision,2004,60(1):63-86. 被引量:1
  • 3Matas J,Chum O,Urban M,et al.Robust wide baseline stereo from maximally stable extremal regions[C]// Proc of the British Machine Vision Conference,2002:384-393. 被引量:1
  • 4Mikolajczyk K,Tuytelaars T,Schmid C,et al.A comparison of affine region detectors[J].International Journal of Computer Vision,2005,65(1):43-72. 被引量:1
  • 5Morel J M,Yu G.ASIFT:A new framework for fully affine invariant image comparison[J].SIAM Journal on Imaging Sciences,2009,2(2):438-469. 被引量:1
  • 6Lowe D.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 7Rublee E,Rabaud V,Konolige K,et al.ORB:An efficient alternative to SIFT or SURF[C]//Proc of 2011 IEEE International Conference on Computer Vision (ICCV 2011),2011:2564-2571. 被引量:1
  • 8Rosten E,Porter R,Drummond T.Faster and better:A machine learning approach to corner detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(1):105-119. 被引量:1
  • 9Calonder M,Lepetit V,Strecha C,et al.BRIEF:Binary robust independent elementary features[C]//Proc of European Conference on Computer Vision,2010:1. 被引量:1
  • 10Calonder M,Lepetit V,Ozuysal M,et al.BRIEF:Computing a local binary descriptor very fast[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34 (7):1281-1298. 被引量:1

共引文献88

同被引文献44

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部