期刊文献+

结合快速鲁棒性特征改进ORB的特征点匹配算法 被引量:22

Improved feature points matching algorithm based on speed-up robust feature and oriented fast and rotated brief
下载PDF
导出
摘要 针对定向二进制简单描述符(ORB)算法不具备尺度不变性的问题,提出一种结合快速鲁棒性特征(SURF)算法和ORB的改进算法。首先,利用Hessian矩阵检测特征点的方法,使得提取出的特征点具有尺度不变性;然后,用ORB生成特征描述子;接着采用K-近邻算法进行粗匹配;最后,通过比率测试、对称测试、最小平方中值(LMed S)定理进行提纯。尺度变化时,该算法比ORB的匹配精度提高了74.3个百分点,比SURF的匹配精度提高了4.8个百分点;旋转变化时,该算法比ORB的匹配精度提高了6.6个百分点;匹配时间高于SURF低于ORB。实验结果表明,改进算法不仅保持了ORB的旋转不变性,而且具备了尺度不变性,在不失速度的前提下,匹配精度得到较大提高。 Focusing on the issue that the Oriented fast and Rotated Brief( ORB) algorithm does not have scale invariance, an improved algorithm based on Speed-Up Robust Feature( SURF) and ORB was proposed. First, the feature points were detected by Hessian matrix, which made the extracted feature points have scale invariance. Second, the feature descriptors were generated by the ORB. Then the K-nearest neighbor algorithm was used for rough matching. Finally, the ratio test, symmetry test, the Least Median Squares( LMed S) theorem was used for purification. When the scale changed, the proposed algorithm's matching precision was improved by 74. 3 percentage points than the ORB and matching precision was improved by 4. 8 percentage points than the SURF. When the rotation changed, the proposed algorithm's matching precision was improved by 6. 6 percentage points than the ORB. The proposed algorithm's matching time was above the SURF, below the ORB. The experimental results show that the improved algorithm not only keeps the rotation invariance of ORB, but also has the scale invariance, and the matching accuracy is improved greatly without decreasing the speed.
出处 《计算机应用》 CSCD 北大核心 2016年第7期1923-1926,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61162020)~~
关键词 特征点匹配 尺度不变性 旋转不变性 比率测试 对称测试 最小平方中值定理 feature point matching scale invariance rotation invariance ratio test symmetry test Least Median Squares(LMed S) theorem
  • 相关文献

参考文献15

二级参考文献80

  • 1王宾,潘建寿,王琳,崔宇巍.基于多特征融合的均值偏移视频目标跟踪算法[J].小型微型计算机系统,2006,27(9):1746-1749. 被引量:6
  • 2李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:153
  • 3Kern J P,Pattichis M S.Robust multispectral image registration using mutual-information models[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(5):1494-1505. 被引量:1
  • 4Liu X Z,Tian Z,Chai C Y,et al.Multiscale registration of remote sensing image using robust SIFT features in steerable-domain[J].The Egyptian J Remote Sensing and Space Sci,2011,14(2):63-72. 被引量:1
  • 5Calonder M,Lepetit V,Ozuysal M,et al.BRIEF:Computing a local binary descriptor very fast[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(6):1281-1298. 被引量:1
  • 6Rublee E,Rabaud V,Konolige K,et al.ORB:An efficient alternative to SIFT or SURF[C]//2011 International Conference on Computer Vision,Barcelona,Spain,2011:2564-2571. 被引量:1
  • 7Rosten E,Drummond T.Machine learning for high-speed corner detection[C]//Lecture Notes in Computer Science,2006,3951:430-443. 被引量:1
  • 8Fischer M A,Bolles R C.Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM,1981,24(6):381-395. 被引量:1
  • 9Marius M,Lowe D G.Fast approximate nearest neighbors with automatic algorithm configuration[C]//International Conference on Computer Vision Theory and Applications,Lisboa,Portugal,2009:331-340. 被引量:1
  • 10Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1

共引文献113

同被引文献133

引证文献22

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部