期刊文献+

基于图像结构与改进Brief检测算子的目标匹配算法 被引量:4

Objects feature point match algorithm based on image structure and improved brief detector
下载PDF
导出
摘要 为了解决当前特征点匹配算法在前景遮挡、背景复杂的干扰下,存在匹配能力不足的问题,提出了基于改进Brief的目标鲁棒匹配算法。首先,对存在匹配干扰的图像展开分析,通过基于不变矩的特征点检测方法,改进breif特征点检测。然后扩大滤波范围来处理目标积分图像,通过基于特征点主方向的旋转矩阵,构建Brief特征描述算子;最后结合欧式距离和KNN,进行匹配运算,并编程实现算法,实验测试结果显示:与当前传统特征点匹配算法相比,在特征遮挡严重、背景极复杂的干扰下,本文算法拥有较强的匹配精度与鲁棒性。 In order to solve the problem of insufficient recognition, in the current target identification algorithm under the prospect of sheltering and complex background interference, this paper put forward the feature point robust match algo-rithm based on improved brief, goals. First of all, to identify interference image analysis, Brief, algorithm and improve ment ideas were put forward. And then, to improve the Brief feature point detection, fast robust Brief feature points de tection operator is put forward. Finally, by expanding the scope of the filtering processing target integral image, improve the Brief description operator. Algorithm is realized and test by using C language. The test results show that compared with the traditional target recognition algorithm, the target block, the interference of background is extremely complex, the algorithm has strong ability of recognition in this paper.
作者 李莉
出处 《国外电子测量技术》 2017年第2期29-33,共5页 Foreign Electronic Measurement Technology
关键词 Brief特征 目标匹配 特征点检测 积分图像 特征描述 鲁棒 Brief target identification feature point detection integral image character description robust
  • 相关文献

参考文献6

二级参考文献70

  • 1童宇,蔡自兴.基于特征匹配的全景图的生成[J].华中科技大学学报(自然科学版),2004,32(S1):77-79. 被引量:2
  • 2张力,肖薇薇,钱恭斌,纪震.基于Krawtchouk不变矩的仿射攻击不变性局部水印算法[J].电子学报,2007,35(7):1403-1408. 被引量:11
  • 3LIU X Z, TIAN ZH, CHAI CH Y, et al., Multiscale registration of remote sensing image using robust SIFT features in steerable-domain[ J]. The Egyptian Journal of Remote Sensing and Space Sciences, 2011 (14) :63-72. 被引量:1
  • 4MORTEZA Z, SEYED M S. Plate recognition system based on SIFT features [ J ]. Procedia Computer Sci- ence, 2011 (3) : 998-1002. 被引量:1
  • 5HERBERT B, TINNE T, LUC V G. SURF: speeded up robust features [ C ]. Proceedings of the 9th European Conference on Computer Vision, Springer LNCS, 2006, 3951 ( 1 ) :404-407. 被引量:1
  • 6KADIR H A, ARSHAD M R. Features detection and matching for visual simuhaneous localization and mapping (VSLAM) [ C ]. IEEE Conference on Control System, Computing and Engineering (ICCSCE), 2013,40-45. 被引量:1
  • 7BAY H, TUYTELAARS T, VAN GOOL L, et al. Surf: Speeded-up robust features (SURF) [ M]. Computer Vi- sion-ECCV, 2006: 404417. 被引量:1
  • 8MIKOLAJCZYK K, SCHMID C. A performance evalua- tion of local descriptors [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2005, 27 (10) : 1615-1630. 被引量:1
  • 9VALGREN C, LILIENTHAL J A. SIFT, SURF & sea- sons: Appearance-based long-term localization in outdoor environments [ J]. Robotics and Autonomous Systems, 2010, 58(2) :149-156. 被引量:1
  • 10WANG K, CHENG B, MA L, et al. Multi-source remote sensing image registration based on normalized SURF al- gorithm[J]. Computer Science and Electronics Engineer- ing (ICCSEE), 2012( 1 ) :373-377. 被引量:1

共引文献143

同被引文献25

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部