期刊文献+

一种改进粒子群优化算法的Otsu图像阈值分割方法 被引量:36

Otsu Image Threshold Segmentation Method Based on Improved Particle Swarm Optimization
下载PDF
导出
摘要 阈值法分割图像时只利用图像的灰度信息,具有直观、实现简单的特点。针对传统的粒子群优化算法(Particle Swarm Optimization,PSO)分割图像易陷入局部最优的缺点,提出一种基于改进粒子群优化算法的Otsu图像阈值分割方法。以Otsu算法的类间方差作为适应度函数,在每次迭代中选取适应度较好的粒子同时加入新的粒子,以提高粒子多样性。实验表明,与Otsu算法和PSO算法相比,改进的粒子群优化算法不仅加快了收敛速度和运算速度,而且提高了图像分割的准确率。 The thresholding method only needs the gray information to spilt image,which is more intuitive and much easier to be implemented.Aiming at the problem that the traditional PSO algorithm used for image segmentation is easy to fall into local optimum,this paper proposed an Otsu image threshold segmentation method based on the improved PSO.We took the inter-class variance of Otsu as the fitness function,and selected the particles with better fitness and added new particles to increase the diversity of the particles.The experimental results show that,compared with Otsu methods and PSO algorithm,the improved PSO accelerates the speed of convergence and computation,and improves the accuracy of image segmentation.
出处 《计算机科学》 CSCD 北大核心 2016年第3期309-312,共4页 Computer Science
基金 青年科学基金项目(61402212)语义Web模糊规则互换与推理关键技术研究资助
关键词 图像分割 OTSU 类间方差 粒子群优化 适应度函数 Image segmentation Otsu Inter-class variance Particle swarm optimization Fitness function
  • 相关文献

参考文献9

二级参考文献91

  • 1杨燕,靳蕃,Mohamed Kamel.一种基于蚁群算法的聚类组合方法[J].铁道学报,2004,26(4):64-69. 被引量:39
  • 2段海滨,王道波.蚁群算法的全局收敛性研究及改进[J].系统工程与电子技术,2004,26(10):1506-1509. 被引量:40
  • 3于海征.基于奇异值分解的数字图像的特征提取[J].工程数学学报,2004,21(F12):131-134. 被引量:12
  • 4Nikhil R Pal,Sankar K PaI.A Review on Image Segmentation Techniques[J].Pattern Recognition, 1993;26(9): 1227-1294. 被引量:1
  • 5Shaoo P K et al.A Survey of Thresholding Techniques[J].Computer Vision,Graphics and Image Processing, 1988 ,41:233-260. 被引量:1
  • 6Abutaleb A S.Automatic thresholding of grey level picture using two-dimensional entropy [J].Computer Vision,Graphics and Image Processing, 1989; 47 : 22-32. 被引量:1
  • 7Felix T S Chan, Manoj Kumar Tiwari. Swarm Intelligence: Focus on Ant and Particle Swarm Optimization[ M]. Vienna,Austria: hech Education and Publishing,2007 : 163 - 178. 被引量:1
  • 8Suchendra M Bhandarkar, Hui Zhang. Image Segmentation Using Evolutionary Computation. IEEE Transactions on evolutionary computation, 1999,3 ( 1 ). 被引量:1
  • 9Salima Ouadfel, Mohamed Batouche. An Efficient Ant Algorithm for Swarm-Based Image Clustering [ J ]. Journal of Computer Science,2007, 3(3) :162 -167. 被引量:1
  • 10Kennedy J, Eberhart R. Particle Swarm Optimization[ C ]//Proceedings of the 1995 IEEE International Conference on Neural Networks, Piscataway, NJ, Perth, IEEE service center, 1995:1942- 1948. 被引量:1

共引文献573

同被引文献331

引证文献36

二级引证文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部