期刊文献+

基于空间信息熵活动轮廓模型的图像分割 被引量:14

Medical Image Segmentation Based on Active Contour Model of Spatial Information Entropy
下载PDF
导出
摘要 为了克服噪声、弱边界和灰度不均匀现象对图像分割的影响,提出空间信息熵驱动的活动轮廓图像分割模型。该模型通过空间信息熵刻画图像灰度的变化,利用图像的全局统计信息来克服灰度不均匀性。并构造一种新的基于空间信息熵的符号压力函数来促使轮廓曲线向边缘靠近,最终停留在图像的边缘,完成对目标的分割。此外,该模型采用二值水平集方法求解,避免了繁杂的计算过程。实验结果表明,该模型可以克服复杂背景对图像分割的影响,实现快速准确的分割。 In order to reduce the impacts of noise, weaken boundary and intensity inhomogeneity, a new active contour model driven by spatial entropy applied on medical image segmentation is proposed. The spatial entropy of image is abstracted to describe the intensity variation. As a result, the global statistic intensity information is used to overcome the intensity inhomogeneity. In addition, the signed pressure force function based on the spatial entropy is structured, which drives the contour curve close to the boundary of the target and achieves the segmentation of the object. In addition, this model is implemented by the binary level set method, which avoids complex computation. The experimental results show that this method can overcome the influence of complex background on the segmentation and realize fast and accurate segmentation.
作者 马翔 楚莹莹 陈允杰 MA Xiang;CHU Ying-ying;CHEN Yun-jie(School of Mathematics,Engineering University of CAPF,Xian 710086,China;School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《控制工程》 CSCD 北大核心 2018年第11期2010-2016,共7页 Control Engineering of China
关键词 灰度不均匀 图像分割 空间信息熵 符号压力函数 二值水平集方法 Intensity inhomogeneity image segmentation spatial entropy signed pressure force function binary level set method
  • 相关文献

参考文献3

二级参考文献40

  • 1Kass M,Witkin A,Terzopulos D.Snake active contour models[J].International Journal of Computer Vision,1987,1(4):321-331. 被引量:1
  • 2Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61-79. 被引量:1
  • 3Li C,Xu C,Gui C,et al.Levelset evolution without re-initialization:A new variational formulation .IEEE Conference on Computer Vision and Pattern Recognition (CVPR) .San Diego:IEEE,2005,1:430-436. 被引量:1
  • 4Chan T,Vese L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277. 被引量:1
  • 5Li C,Kao C,Gore J,Ding Z.Implicit active contours driven by local binary fitting energy[J].IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),2007.1-7. 被引量:1
  • 6Zhang Kai hua,Song Huihui,Zhang Lei.Active contours driven by local fitting energy[J].Pattern Recognition,2010,43(4):1199-1206. 被引量:1
  • 7Zhang Kai hua,Zhang Lei,et al.Active contours with selective local or global segmentation: A new formulation and level set method[J].Image and Vision computing,2010,28(4): 668-676. 被引量:1
  • 8Li Wang,Li Chunming,Sun Quansen,et al.Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J].Computerized Medical Imaging and Graphics,October 2009,33(7):520-531. 被引量:1
  • 9Kass M, Witkin A, Terzopulos D. Snake active contour models [J]. International Journal of Computer Vision, 1987, 1(4):321-331. 被引量:1
  • 10Caselles V, Kimmel R, Sapiro G. Geodesic active contours [J]. International Journal of Computer Vision, 1997, 22(1):61-79. 被引量:1

共引文献28

同被引文献122

引证文献14

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部