期刊文献+

可变尺度区域拟合模型的侧扫声纳分割方法 被引量:1

Side scan sonar image segmentation method of region-scalable fitting energy model
下载PDF
导出
摘要 为解决现有侧扫声纳图像目标分割准确度不高的问题,提出一种联合最大熵去噪和可变尺度区域拟合模型的侧扫声纳图像分割方法。首先,计算图像一维熵,基于最大熵原则对侧扫图像进行降噪处理,提高图像质量,并根据峰值信噪比评判降噪效果;然后基于可变尺度区域拟合模型,采用高斯核函数对分割活动轮廓进行约束,分割降噪后的侧扫声纳图像。通过对含有不同目标物的侧扫声纳图像进行分割实验,验证了联合最大熵去噪和可变尺度区域拟合模型的有效性。 In order to solve the low accuracy of side scan sonar image segmentation, a region-based active contour method of side scan sonar image segmentation is proposed.In order to eliminate the noise of the side scan sonar image, the 1 D entropy is calculated and the principle of maximum entropy is used to reduce the noise of the side scan sonar image, and evaluate the denoising effect according to the peak signal-to-noise ratio firstly;then based on the Region-Scalable Fitting Energy model, Gaussian kernel function is used to constrain the segmentation active contour.Through the segmentation experiment of side scan sonar images containing different targets, the effectiveness of the Maximum entropy denoising and the Region-Scalable Fitting Energy model is verified.The Region-Scalable Fitting Energy proposed in this paper provides a method to segment high-noise side scan sonar images.
作者 刘大川 严晋 马龙 董凌宇 LIU Dachuan;YAN Jin;MA Long;DONG Lingyu(North China Sea Marine Technical Support Center,State Oceanic Administration,Qingdao 266033,China;Qingdao Institute of Marine Geology,China Geological Survey,Qingdao 266071,China)
出处 《海洋测绘》 CSCD 北大核心 2021年第3期62-64,78,共4页 Hydrographic Surveying and Charting
基金 北海分局海洋科技项目(201907)。
关键词 侧扫声纳图像 图像分割 可变尺度区域拟合模型 图像一维熵 side scan sonar image image segmentation region-scalable fitting energy model image 1D entropy
  • 相关文献

参考文献7

二级参考文献31

  • 1陈箫枫,潘保昌,郑胜林,赵全友,梁坚.用顶帽变换估计并消除图像背景[J].微计算机信息,2008,24(9):310-311. 被引量:11
  • 2阳凡林,吴自银,独知行,金翔龙.多波束声纳和侧扫声纳数字信息的配准及融合[J].武汉大学学报(信息科学版),2006,31(8):740-743. 被引量:19
  • 3Xiu F Y, Zhe H Z, Peter X. L, et al. Sonar image segmentation based on GMRF and level-set models [ J ]. Ocean Engineering, 2010,37 (10) :891 -901. 被引量:1
  • 4Park S, Min S. Optimal topology design of magnetic devices using level-set method [ J ]. IEEE Transactions on Magnetics, 2009, 45(3) :1610-1613. 被引量:1
  • 5Vese L, Chan T. A multiphase level set framework for image seg- mentation using the Mumford and Shah model [ J ]. International Journal of Computer Vision ,2002,50 (3) : 971 -293. 被引量:1
  • 6Li C, Kao C Y, Gore J, et al. Implicit active contours driven by lo- cal binary fitting energy[ C ]//IEEE Conference on Computer Vi- sion and Pattern Recognition, CVPR 2007,2007:1 -7. 被引量:1
  • 7Li C,Xu C, Gui C. Level set evolution without reinitialization: A new variational formulation [ C ]//IEEE Conference on Computer Vision and Pattern Recognition, San Diego ,2005:430-436. 被引量:1
  • 8L-3. Communications Sea Beam Instrunments Multibeam Sonar Theory of Openration[OL]. ht- tp..//doc, igm. bo. cnr. it/MBEAMS/ELAC BOOK/thop_toc. pdf, 2004. 被引量:1
  • 9George L, Maria P. Image Registration Using the Walsh Transform[J]. IEEE Transaction on Image Processing, 2006, 8(15): 2 343-2 357. 被引量:1
  • 10Daniel S, Leannec F L, Roux C, et al. Side-scan Sonar Image Matching[J]. IEEE Journal of Oceanic Engineering, 1998, 23(3): 245-259. 被引量:1

共引文献44

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部