期刊文献+

移动最小二乘近似在图像分割中的应用

Application of the Moving Least Squares Approximation to Image Segmentation
原文传递
导出
摘要 【目的】研究图像分割模型中水平集发展方程的高效稳定的数值解法。【方法】用移动最小二乘近似逼近水平集函数,然后将水平集发展方程离散为常微分方程组,并用向前Euler法求解。【结果】给出了一种图像分割的移动最小二乘近似方法,分割终止标准明确,形成的系数矩阵稀疏、条件数很小。【结论】数值实验表明该方法不需要重新初始化水平集函数,克服了水平集初始轮廓对分割结果的影响,是一种具有较高分割精度和较快分割速度的图像分割方法。 [Purposes]An efficient and stable numerical method is developed for the numerical solution of the level set evolution equation arising in image segmentation.[Methods]The level set function is approximated by the moving least squares approximation,and then the level set evolution equation is discredited into ordinary differential equations that can be solved by the forward Euler’s method.[Findings]A moving least squares approximation method for image segmentation is presented.In this method,the stop criterion is explicit,and the coefficient matrix is sparse and has small condition number.[Conclusions]Numerical experimental results reveal that the method requires no re-initialization procedure and conquers the effect by the initial contour of the level set function.Therefore,the developed method is robust to segment images with high precision and fast speed.
作者 李淑玲 郭岚 LI Shuling;GUO Lan(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期102-106,共5页 Journal of Chongqing Normal University:Natural Science
基金 重庆市教委科学技术研究项目(No.KJ1600330) 重庆市基础科学与前沿技术研究项目(No.cstc2017jcyjAX0176 No.cstc2015jcyjA0309) 国家自然科学基金(No.11471063)
关键词 移动最小二乘近似 数值计算 水平集方法 图像分割 moving least squares approximation numerical computation level set method image segmentation
  • 相关文献

参考文献2

二级参考文献30

  • 1时贞军.精确搜索下的非线性共轭梯度法[J].数学物理学报(A辑),2004,24(6):675-682. 被引量:6
  • 2张雄 刘岩.无网格方法[M].北京:清华大学出版社,2004.14-19. 被引量:10
  • 3Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. International Journal of Computer Vision, 1988, 1: 321-331. 被引量:1
  • 4Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces [M]. New York: SpringerVerlag, 2003. 被引量:1
  • 5Sethian J A. Level Set Methods and Fast Marching Methods: Evolving Interface in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science [M]. Cambridge: Cambridge University Press, 1999. 被引量:1
  • 6Mumford D, Shah J. Boundary detection by minimizing functionals [C]/ / IEEE Conference on Computer Vision and Pattern Recognition. Amsterdam: Kluwer Academic Publishers, 1985: 22-26. 被引量:1
  • 7Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685. 被引量:1
  • 8Chan T F, Vese L. Active contours without edges [J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277. 被引量:1
  • 9Chan T F, Vese L. Image Segmentation Using Level Sets and the Piecewise-Constant MumfordShah Model [R]. Technical Report 00-14, UCLA CAM Report, 2000. 被引量:1
  • 10Chan T F, Sandberg B Y, Vese L A. Active contours without edge for vector-valued images[J]. Journal of Visual Communication and Image Representation, 2000, 11: 130-141. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部