期刊文献+

基于低通滤波和多特征联合优化的夜间图像去雾 被引量:8

Nighttime Image Dehazing Based on Low-Pass Filtering and Joint Optimization of Multi-Feature
原文传递
导出
摘要 夜间有雾图像光照不均、对比度较低且色偏严重。现有的去雾算法主要是针对白天图像,并不适用于夜间场景,夜间图像去雾难度较大。该文通过深入分析夜间有雾图像的成像特点,提出了基于低通滤波和多特征联合优化的夜间图像去雾算法。针对夜间图像环境光照不均匀问题,提出先对图像进行低通滤波,然后对其低频分量三通道利用最小-最大值滤波估计局部环境光;针对目前白天去雾算法先验不适用于夜间图像,提出结合图像对比度、饱和度和信息熵特征,构建多特征联合优化函数估计透射率;针对夜间图像存在非一致色偏问题,提出非重叠块局部Shade of Gray算法进行颜色校正。实验结果表明:所提算法去雾图像的主观视觉效果较好,且对比度和色偏程度两方面客观评价指标整体优于其他对比算法。该算法能够有效去除夜间图像雾气,提高图像的对比度,恢复更多的细节信息,且颜色自然,视觉效果理想。 Nighttime hazy image usually has the non-uniform illumination,low contrast and serious color deviation.The existing dehazing methods are mainly proposed for daytime images,which don't fit well with the conditions of most nighttime hazy scenes.Nighttime image dehazing is more difficult.We explore the imaging characteristics under nighttime conditions and propose a new nighttime image dehazing method based on low-pass filtering and joint optimization of multi-feature.Firstly,in order to handle the non-uniform illumination of nighttime scenes,the image is filtered by the low-pass filtering.And then the minimum-maximum filtering is applied to the low frequency components to estimate the local atmospheric light.Secondly,for the current daytime dehazing algorithm prior is not suitable for nighttime image,an effective transmission estimation method is presented based on the joint optimization of multi-feature which combines contrast,saturation and information entropy.Finally,for the non-uniform color deviation exists in nighttime images,the non-overlapping blocking local Shade of Gray is proposed.Experimental results demonstrate that the proposed algorithm has a good subjective visual effect,and the objective evaluation indexes are superior to other algorithms in contrast and color deviation degree.The proposed algorithm can significantly remove haze,improve the contrast and recover more details with the natural color and better visual effect.
作者 杨爱萍 赵美琪 王海新 鲁立宇 Yang Aiping;Zhao Meiqi;Wang Haixin;Lu Liyu(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2018年第10期159-168,共10页 Acta Optica Sinica
基金 国家自然科学基金(61372145 61472274 61771329)
关键词 图像处理 夜间图像去雾 低通滤波 局部环境光 多特征联合优化 image processing nighttime image dehazing low-pass filtering local atmospheric light joint optimization of multi-feature
  • 相关文献

参考文献7

二级参考文献75

  • 1胡韦伟,汪荣贵,方帅,胡琼.基于双边滤波的Retinex图像增强算法[J].工程图学学报,2010,31(2):104-109. 被引量:55
  • 2Fan Guo,Jin Tang,Zi-Xing Cai.Image Dehazing Based on Haziness Analysis[J].International Journal of Automation and computing,2014,11(1):78-86. 被引量:4
  • 3王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 4孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 5Tail R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8. 被引量:1
  • 6Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): Article No. 72. 被引量:1
  • 7He K M, Sun J, Tang X O. Single image haze removal us- ing dark channel prior. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami. USA: IEEE, 2009. 1956-1963. 被引量:1
  • 8Tarel J P, Hautiere N. Fast visibility restoration from a sin- gle color or gray level image. In: Proceedings of the 12th IEEE International Conference oil Computer Vision. Kyoto, USA: IEEE. 2009. 2201-2208. 被引量:1
  • 9Namer E, Schectmer Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the 2005 Polarization Science arid Remote Sensing. San Diego, USA: SPIE, 2005. 36-45. 被引量:1
  • 10Cardei V C, Funt B, Barnard K. White point estimation for uncalibrated images. In: Proceedings of the 7th IS and T/SID Color Imaging Conference: Color Science, Systems and Applications. Scottsdale, 1999. 97-100. 被引量:1

共引文献225

同被引文献59

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部