期刊文献+

动力时程分析时间步预判方法及其有效性验证 被引量:4

Time step anticipation method for dynamic time history analysis and its effectiveness verification
下载PDF
导出
摘要 在计算量大的工程数值计算中,为了使计算精度保持一致,尽可能的节省计算成本,提高计算效率,在动力时程分析过程中,针对由时域离散产生的误差,本文建立了相对误差与时间步长之间的关系式,通过自动调整时间步长,实现了时间步长的预判。本文方法不同于后验式时间自适应方法,是在先验式时间自适应研究领域方面的一次大胆尝试,丰富了时间自适应理论研究。同时,选取具有解析解的算例验证了该方法在提高计算效率方面的有效性,与传统时域离散方法Newmark-β法相比较,在保证两者计算精度一致的前提下,该方法十分显著地节省了计算时间,有效地提高了计算效率,这在工程数值计算中具有重要意义。 The rapid development of computer hardware is very effective to improve the computational efficiency. But no matter how to improve the hardware, it is still a very important and meaningful thing to improve the calculation efficiency through the improvement and development of calculation methods. In order to improve the efficiency of numerical calculation, according to the error caused by time step in structure dynamic time history analysis, this paper establishes a relationship between the time step and relative error, which can anticipate time step under the condition of meeting the given bound error, and enriches the research of time adaptive theory. Different from the posteriori error estimation time adaptive method, the time step anticipation method is a bold attempt to the apriori method. Examples with analytical solution verify the effectiveness of the anticipation method in improving calculation efficiency. Compared with the traditional time discrete Newmark-β method, the anticipation method saves the computation time greatly with the guarantee of calculation accuracy at the same time, as well as improves the computational efficiency, which is of great significance in engineering numerical calculation.
作者 李彬 唐小微
出处 《应用力学学报》 CAS CSCD 北大核心 2018年第5期933-937,共5页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金项目(51639002 41402261) 辽宁省博士科研启动基金(201601055)
关键词 时间自适应 时间步长 NEWMARK-Β法 计算效率 计算精度 time adaptivity time step Newmark-β method computation efficiency calculation accuracy
  • 相关文献

参考文献4

二级参考文献47

共引文献7

同被引文献8

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部