期刊文献+

优化时间步长的数值方法解核反应堆点动态学方程 被引量:4

Solving Point Reactor Kinetic Equations by Time Step-Size Adaptable Numerical Methods
下载PDF
导出
摘要 通过分析步长与数值误差的关系,论证了调整和优化步长的必要性。从步长与误差的关系出发,介绍了数值求解初值微分方程问题的两种优化步长的方法:两步计算法和嵌入式龙格-库塔法。在用隐式欧拉法对反应堆点动态学方程进行数值求解时,采用两步计算法对步长进行优化,计算的结果表明控制误差对步长及数值解的精确性有决定性的影响;通过求解反应堆点动态学方程,对MATLAB自带的嵌入式龙格-库塔法的微分方程求解函数ode23及ode45的精确性及使用情况进行了探讨。 Based on the analysis of effects of time step-size on numerical solutions, this paper showed the necessity of step-size adaptation. Based on the relationship between error and step-size, two-step adaptation methods for solving initial value problems (IVPs) were introduced. They are Two-Step Method and Embedded Runge-Kutta Method. PRKEs were solved by implicit Euler method with step-sizes optimized by using Two-Step Method. It was observed that the control error has important influence on the step-size and the accuracy of solutions. With suitable control errors, the solutions of PRKEs computed by the above mentioned method are accurate reasonably. The accuracy and usage of MATLAB built-in ODE solvers ode23 and ode45, both of which adopt Runge-Kutta-Fehlberg method, were also studied and discussed.
作者 廖茶清
出处 《核动力工程》 EI CAS CSCD 北大核心 2007年第2期8-12,共5页 Nuclear Power Engineering
关键词 核反应堆点动态学方程 优化时间步长 误差 欧拉法 嵌入式龙格-库塔法 Point Reactor Kinetic Equations, Time Step-Size Adaptation, Error, Euler Method, Embedded Runge-Kutta Method
  • 相关文献

参考文献5

  • 1Stacey W M.Nuclear Reactor Physics[M].New York:John Wiley& Sons,2001,139 ~ 190. 被引量:1
  • 2Ott K O,Neuhold R J.Introductory Nuclear Reactor Dynamics[M].La Grange Park,Illinois:American Nuclear Society,1985,158 ~ 179. 被引量:1
  • 3Gear C W.Numerical Initial Value Problems in Ordi nary Differential Equations[M].Englewood Cliffs,New Jersey:Prentice-Hall,1971,7 ~ 23. 被引量:1
  • 4Stoer J,Bulirsch R.Introduction to Numerical Analy sis[M].3rd Edition.New York:Springer,2002,486 ~492. 被引量:1
  • 5The Mathworks Inc.Using Matlab[M].Version 6.Natick,Massachusetts:The Mathworks Inc.2000. 被引量:1

同被引文献29

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部