期刊文献+

基于AHRS与PDR融合的个人室内自定位方法研究 被引量:1

Research on personal indoor self-positioning method based on AHRS and PDR fusion
下载PDF
导出
摘要 针对个人室内自定位问题,本文提出了基于航姿系统(AHRS)与行人航位推算(PDR)融合的自定位方法。该方法分为4部分:在步频测量中通过加速度计数据变化反映行人步行状态,在步长估计中利用模糊决策的方式获得较为合理的计算步长,在姿态估计中使用AHRS来得到低动态下个人相对精确的姿态信息,在位姿计算中结合步长和姿态数据最终计算得到个人的位姿信息。进行了不同室内环境下的实验以及与PDR方法的仿真对比,实验结果证明了该方法的可行性,仿真对比结果表明了该方法的有效性,室内定位误差不超过0. 5m。 Aimming at personal indoor localization problem,self-positioning method based on attitude heading reference system( AHRS) and pedestrian dead reckoning( PDR) fusion is proposed in this work. The method is divided into four parts: pedestrian state is reflected through accelerometer data change in walking frequency measurement; the reasonable calculation step is obtained by using the method of fuzzy decision in step size estimation; relatively accurate attitude information at low dynamic is got by using AHRS in attitude estimation; the pose information is finally obtained by combining the step size and the attitude data in pose updating. Through experiments in different indoor environments and comparison with PDR method,the experimental results prove the feasibility of the method and simulation results show that the proposed method is effective and the indoor location error is no more than 0. 5 m.
作者 彭锐 程磊 代雅婷 赵熙桐 Peng Rui;Cheng Lei;Dai Yating;Zhao Xitong(School of Information Science and Engineering,Wuhan University of Science and Technology,Wuhan 430081)
出处 《高技术通讯》 EI CAS 北大核心 2018年第6期567-574,共8页 Chinese High Technology Letters
基金 国家自然科学基金(61203331 61573263) 湖北省自然科学基金(2014CFB813) 湖北省科技支撑计划(2015BAA018) 湖北省教育厅科研计划重点(D20131105)资助项目
关键词 个人室内自定位 航姿系统(AHRS) 行人航位推算(PDR) 模糊决策 personal indoor self-positioning attitude heading reference system ( AHRS) pedestrian dead reckoning (PDR) fuzzy decision
  • 相关文献

参考文献6

二级参考文献47

  • 1Ladetto Q,Verhaert K. Pedestrian navigation apparatus and method [P]. U S Patent: US20070260418 A1. 2007. 被引量:1
  • 2RenaudinV, Yalak O, Tom P. Hybridization of MEMS and assisted GPS for pedestrian navigation [J]. Inside GNSS, 2007, 2(1): 34-42. 被引量:1
  • 3Lee S W, Mase K. A personal indoor navigation system using wearable sensors [C]//Proc Second Int Symp on Mixed Reality. USA: ISMR, 2001: 147-148. 被引量:1
  • 4Judd C T. A personal dead reckoning module [J], Institute of Navigation's ION GPS, 1997, 97: 1-5. 被引量:1
  • 5Bao L, Intille S S. Activity recognition from user-annotated acceleration data [M]. Berlin: Springer, 2004. 被引量:1
  • 6Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167. 被引量:1
  • 7ZHANG S, XIONG Y, MA J, et al. Indoor location based on independent sensors and WIFI [C]// International Conference on Computer Science and Network Technology. 2011: 2640-2643. 被引量:1
  • 8JIMENEZ R A R, SECO G F, PRIETO H I C, et al. Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements [J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(1): 178-189. 被引量:1
  • 9PRATAMA A R, WIDYAWAN H R. Smartphone-based pedestrian dead reckoning as an indoor positioning system [C]//International Conference on System Engineering and Technology. 2012: 1-6. 被引量:1
  • 10WANG J S, LIN C W, YANG Y T C, et al. Walking pattern classification and walking dis- tance estimation algorithms using gait phase information [J]. IEEE Transactions on Biomedical Engineering, 2012, 59(10): 2884-2892. 被引量:1

共引文献92

同被引文献25

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部