期刊文献+

基于模糊聚类和猫群算法的室内定位算法 被引量:21

Indoor positioning algorithm based on fuzzy clustering and cat swarm optimization
下载PDF
导出
摘要 针对RSSI室内指纹定位算法中参考点误匹配和位置搜寻问题,提出了一种基于模糊聚类和猫群算法的室内定位方法。首先,采用模糊聚类代替传统硬聚类算法,并根据聚类中参考点的隶属度对聚类中心的RSSI特征进行合理估算,不但增加了参考点之间的差异性,而且减小了特征匹配的复杂度;其次,利用猫群算法在靠近最优解处收敛速度快的特点,同时在算法中加入投食机制以增加算法局部搜索的能力,实现了稳定快速的区域化位置搜寻。实验结果表明,与传统算法相比,所提算法可以提高12.5%的定位精度。 The received signal strength indication(RSSI) based indoor fingerprinting positioning algorithm has problems of reference-points error-matching and location discovery. To solve these problems, a fuzzy clustering and regional cat swarm based positioning method is proposed. Firstly, the fuzzy clustering is used to accomplish clustering and estimate RSSI feature of the cluster center instead of the traditional hard clustering algorithm. In this way, the fuzzy clustering based two-level matching can increase the difference between reference points, and reduce the complexity of feature matching. Then, the cat swarm optimization is utilized due to the fast convergence near the optimal solution, which is suitable for the location discovery based on the regions obtained by the two-level matching method. Simultaneously, a feed mechanism is designed to improve the local search capability and the convergence speed of the cat swarm optimization. Compared with traditional algorithms, experimental results show that the proposed algorithm can improve the positioning accuracy by 12.5%.
作者 李昂 付敬奇 沈华明 孙泗洲 Li Ang;Fu Jingqi;Shen Huaming;Sun Sizhou(School of Mechatronic and Automation,Shanghai University,Shanghai 200444,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第1期185-194,共10页 Chinese Journal of Scientific Instrument
关键词 室内定位系统 接受信号强度指示 位置指纹定位算法 模糊聚类 猫群算法 indoor positioning system received signal strength indication fingerprinting based positioning algorithm fuzzy clustering cat swarm optimization
  • 相关文献

参考文献6

二级参考文献37

  • 1HARLE R. A survey of indoor inertial positioning systems for pedestrians [ J]. IEEE Communications Surveys & Tutorials ,2013,15 ( 3 ) : 1281-1293. 被引量:1
  • 2ZAMPELLA F, JIMENEZ R A R,SECO F. Robust in- door positioning fusing PDR and RF technologies: The RFID and UWB case [ C]. 2013 International Confer- ence on Indoor Positioning and Indoor Navigation, Mont- beliard Belfort, 2013 : 1-10. 被引量:1
  • 3CHENG L, WU C D, ZHANG Y Z. Indoor robot locali- zation based on wireless sensor networks [ J ]. IEEE Transactions on Consumer Electronics, 2011, 57 ( 3 ) : 1099-1104. 被引量:1
  • 4MAO G, ANDERSON B D O, FIDAN B. Path loss exponent estimation for wireless sensor network locali- zation [J]. Computer Networks, 2007, 51 (10) : 2467-2483. 被引量:1
  • 5SCHMID J, GADEKE T, CURTIS D, et al. Impro- ving sparse organic WiFi localization with inertial sen- sors [C]. 2012 9th Workshop on Positioning Navi-gation and Communication. Dresden, 2012: 30-35. 被引量:1
  • 6WU B F, JEN C L. Particle filter based radio localization for mobile robots in the environments with low- density WLAN APs [ J ]. IEEE Transactions on Industrial Elec- tronics, 2014,6(12) :6860-6870. 被引量:1
  • 7AKIYAMA T, OHASHI H, SATO A, et al. Pedestrian dead reckoning using adaptive particle filter to human moving mode [ C]. 2013 International Conference on In- door Positioning and Indoor Navigation, 2013:1-7. 被引量:1
  • 8KLEPAL M, BEAUREGARD S. A backtracking particle filter for fusing building plans with PDR displacement es- timates[ C ]. Positioning Navigation and Communication, IEEE, 2008: 207-212. 被引量:1
  • 9XU X, JIANG H, HUANG L, et al. A reputation-based revising scheme for localization in wireless sensor net- works [ C ]. Wireless Communications and Networking Conference. Sydney, 2010: 1-6. 被引量:1
  • 10KIM M, NOBLE B. Mobile network estimation[ C]. Pro- ceedings of the 7th annual international conference on Mobile computing and networking. Rome, 2001 : 298-309. 被引量:1

共引文献90

同被引文献167

引证文献21

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部