期刊文献+

基于磁场指纹辅助的手机室内定位系统 被引量:13

Magnetic Fingerprinting Assisted Indoor Localization System on Smartphone
下载PDF
导出
摘要 针对当前室内无线定位信号强度易受干扰、设备部署维护成本高等缺点,以及手机在室内航位推算过程中定位误差随时间累积的问题,本文提出了基于粒子滤波磁场匹配的室内定位方法。相比于传统的航位推算方法,通过改进步态判断方式,并提出了动态步长估计算法和卡尔曼滤波航向估计算法,有效减少步态误判和定位误差。同时通过结合航位推算位置选择粒子滤波算法中的重采样区域,加快粒子收敛速度。最后,通过仿真分析和实际室内环境测试结果表明,本文提出的定位方法能够有效地减小定位误差,并实现2米的定位精度。 Due to in the current wireless based indoor positioning method the received signal strength are suscepti-ble to interference,the cost of equipment deployment and maintenance is high,and the question of in PedestrianDead Reckoning(PDR)systems localization error accumulated by time,this paper presents an indoor positioning sys-tem on smartphone,which uses magnetic matching positioning methods built on particle filter to correct localizationerror in the PDR approach. Compared to the traditional PDR method,the proposed method improves the step detec-tion method and applies a dynamic step length estimation algorithm and heading estimation according to Kalman fil-ter to enhance the robustness and minimize errors. In addition,an adaptive region selection resampling algorithm isintroduced to accelerate the rate of convergence. Finally,through conducting comprehensive experiments and tests,and the results show that the proposed technique can reliably achieve 2 meters precision in a large building.
出处 《传感技术学报》 CAS CSCD 北大核心 2016年第9期1441-1448,共8页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(51377187) 重庆市研究生科研创新项目(CYS16033)
关键词 地磁匹配 航位推算 室内定位 卡尔曼滤波 粒子滤波 magnetic matching pedestrian dead reckoning indoor localization kalman filter particle filter
  • 相关文献

参考文献28

  • 1秦杰,陈希,武穆清.A-GPS定位技术的研究与应用[J].数字通信世界,2007(3):53-56. 被引量:4
  • 2Want R, Hopper A, Falcao V,et al. The Active Badge LocationSystem[J]. ACM Trans on Information Systems, 1992,10(2) :91-102. 被引量:1
  • 3Ward A, Jones A, Hopper A. A New Location Technique for theActive Office [J]. Personal Communications, IEEE, 1997,4(5):42-47. 被引量:1
  • 4Woodman 0 J. An Introduction to Inertial Navigation [J]. Comput-er Laboratory, University of Cambridge, Tech Rep UCAMCL-TR-696,2007,14:15. 被引量:1
  • 5Iglesias H J P,Barral V,Escudero C J. Indoor Person LocalizationSystem through RSSI Bluetooth Fingerprinting [C]//Systems, Sys-tems ,Signals and Image Processing,2012 19th International Con-ference on. IEEE ,2012: 40-43. 被引量:1
  • 6王小辉,汪云甲,张伟.基于RFID的室内定位技术评述[J].传感器与微系统,2009,28(2):1-3. 被引量:61
  • 7Hong F, Zhang Y, Zhang Z, et al. WaP: Indoor Localization andTracking Using Wifi-Assisted Particle Filter [ C ]//Local ComputerNetworks (LCN),2014 IEEE 39th Conference on. IEEE, 2014.210-217. 被引量:1
  • 8Mahfouz M R,Fathy A E,Kuhn M J,et al. Recent Trends and Ad-vances in UWB Positioning [J]. Wireless Sensing, Local Position-ing, and RFID,2009. IMWS 2009. IEEE MTT-S International Mi-crowave Workshop on. IEEE ,2009. 1-4. 被引量:1
  • 9阮陵,张翎,许越,郑星雨.室内定位:分类、方法与应用综述[J].地理信息世界,2015,22(2):8-14. 被引量:80
  • 10刘晓叶,徐玉斌.基于自适应射频指纹地图的WSN室内定位算法研究[J].传感技术学报,2015,28(8):1215-1220. 被引量:5

二级参考文献81

共引文献201

同被引文献97

引证文献13

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部