期刊文献+

基于近邻传播聚类的航空电子部件LMK诊断模型 被引量:3

Localized multi-kernel diagnosis model for avionics based on affinity propagation clustering
下载PDF
导出
摘要 针对小样本条件下,航空电子部件功能模块故障诊断精度不高的问题,将局部多核学习(LMKL)算法的多分辨率解释与局部特征自适应表示能力和超限学习机(ELM)运算高效的特点相结合,提出一种新的局部聚类MK-ELM(LCMKELM)诊断模型。通过引入近邻传播(AP)聚类,在挖掘训练样本局部特征信息的同时,有效约减了局部算法的计算复杂性,避免了过学习问题的出现;通过分别分析输入空间与特征空间的聚类特征,构造了相应的2种选通函数M1、M2,以优化选通函数的模型参数取代优化局部权重,有效解决了核超限学习机(KELM)的对偶优化形式关于局部权重二次非凸的问题。将本文模型应用于某型机旋转变压器激励发生电路功能模块故障诊断,结果表明:相比于4种常用的多核诊断算法,模型在实现低漏警、低虚警的同时,采用M1选通函数的诊断算法将诊断精度平均提升了3.80%,采用M2选通函数的诊断算法将诊断精度平均提升了5.98%。同时,模型在实现与流行的LMKL算法相近的训练时间的同时,测试时间更短。 In consideration of the low diagnosis accuracy for avionics functional module fault,a new offline localized clustering multi-kernel extreme learning machine(LCMKELM) diagnosis model is proposed in this paper by combining the capabilities of multi-resolution interpretation and local feature self-adaptive representation from localized multi-kernel learning(LMKL) with the characteristic of high-performance operation from extreme learning machine(ELM). In order to avoid overfitting issue,affinity propagation(AP) clustering is used to make full use of the underlying localities in the training data and effectively reduce the computational complexity. Considering that the updating of localized kernel weights in dual optimization form of kernel ELM(KELM) is a difficult quadratic nonconvex problem,gating function M1 and M2 are respectively constructed to approximate localized weights by analyzing the clustering characteristics in input space and feature space. The proposed method is applied to actual fault diagnosis task of rotary transformer excitation generating circuit,and the experimental results show that the proposed method has the lower false alarm rate and missing alarm rate in comparison with four state-of-the-art multi-kernel learning algorithms,and meanwhile the diagnosis accuracy is averagely increased by 3. 80% when M1 gating model is used,and increased by 5. 98% when M2 gating model is used. Moreover,compared with canonical LMKL algorithms,the proposed method obtains similar training time cost,but it has less testing time cost.
作者 张伟 许爱强 平殿发 夏菲 ZHANG Wei;XU Aiqiang;PING Dianfa;XIA Fei(Naval Aeronautical University,Yantai 264001,China;Information and Communication Branch Office,State Grid Liaoyang Electric Power Supply Company,Liaoyang 111000,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第8期1693-1704,共12页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61571454) 山东省自然科学基金(ZR2016FQ03)~~
关键词 故障诊断 多核学习 交替优化 近邻传播(AP) 选通模型 局部算法 fault diagnosis multi-kernel learning alternating optimization affinity propagation (AP) gating model localized algorithm
  • 相关文献

参考文献4

二级参考文献59

  • 1Chawla N V, Japkowicz N. Editorial: Special issue on learning from imbalanced datasets. SIGKDD Explorations, 2004, 6: 1-6. 被引量:1
  • 2Weiss G M. Mining with rarity: A unifying framework. SIGKDD Explor Newsl, 2004, 6: 7-19. 被引量:1
  • 3Japkowicz N, Holte R. Workshop report: AAAI-2000 workshop on learning from imbalanced data sets. AI Magazine, 2001, 22: 127-136. 被引量:1
  • 4Crammer K, Singer Y, Cristianini N, Shawe-taylor J, Williamson B. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2001, 2: 265292. 被引量:1
  • 5Wasikowski M, Chen X W. Combating the small sample class imbalance problem using feature selection. Knowledge and Data Engineering, IEEE Transactions on, 2010, 22: 1388-1400. 被引量:1
  • 6Chen X, Gerlach B, Casasent D. Pruning support vectors for imbalanced data classification. In: Proceedings of the International Joint Conference on Neural Networks. Montrcal, Canada, 2005: 1883-1888. 被引量:1
  • 7Tang Y, Zhang Y Q, Chawla N, Krasser S. SVMs modeling for highly imbalanced classification. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2009, 39: 281-288. 被引量:1
  • 8Elkan C. Magical thinking in data mining: Lessons from CoIL challenge 2000. In: Proceedings of the 7thACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2001: 426- 431. 被引量:1
  • 9Zhou Z H, Liu X Y. On multi-class cost-sensitive learning. Computational Intelligence, 2010, 26: 232-257. 被引量:1
  • 10Bach F R, Heckerman D, Horvitz E. Considering cost asymmetry in learning classifiers. J. Mach. Learn. Res., 2006, 7: 1713-1741. 被引量:1

共引文献39

同被引文献25

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部