期刊文献+

双列角接触球轴承的免疫算法优化设计 被引量:7

Optimum design of double-row angular-contact ball bearing with immune algorithm
原文传递
导出
摘要 建立了双列角接触球轴承结构优化的数学模型,用免疫优化算法,分别以额定动载荷、额定静载荷和两者的加权和为目标函数进行轴承结构的优化设计.设计变量包括每列的钢球数、钢球直径、内滚道沟曲率半径系数、外滚道沟曲率半径系数和轴承节圆直径.并对比分析了遗传算法与免疫算法的优化结果.免疫算法可以有效实现优化设计,与轴承手册标准值相比,优化后的3210和3218轴承的额定动载荷和额定静载荷都提高了60%以上. The optimal design model of double-row angular-contact ball bearing was es- tablished. Dynamic load rating, static load rating and the weighted sum of these two load ca- pacities were set as objective functions respectively, the bearings were optimally designed with immune algorithm. The design parameters included number of rolling elements in one row, the rolling element diameter, inner race groove curvature radii, outer race groove cur- vature radii and the pitch diameter. The optimal results of immune method were compared with those of genetic algorithm, and the immune algorithm achieved more efficient results. Furthermore, compared with the designs in the handbook of rolling bearings, dynamic load rating and static load rating of the optimized bearings (3210 and 3218) had an increase of more than 60 %.
作者 程超 汪久根
出处 《航空动力学报》 EI CAS CSCD 北大核心 2015年第11期2810-2816,共7页 Journal of Aerospace Power
基金 国家自然科学基金(51375436)
关键词 双列角接触球轴承 优化设计 免疫算法 遗传算法 额定动载荷 额定静载荷 double-row angular-contact ball bearing optimum design immune algorithm genetic algorithm dynamic load rating static load rating
  • 相关文献

参考文献19

  • 1Harris T A.Rolling bearing analysis[M].New York:John Wiley & Sons,2001. 被引量:1
  • 2万长森编著..滚动轴承的分析方法[M].北京:机械工业出版社,1987:353.
  • 3陈伦军等编著..机械优化设计遗传算法[M].北京:机械工业出版社,2005:195.
  • 4Mezura-Montes E,Coello C A.Constraint-handling in nature-inspired numerical optimization:past,present and future[J].Swarm and Evolutionary Computation,2011(1):173-194. 被引量:1
  • 5金东海,桂幸民.应用多目标遗传算法的叶栅气动优化设计[J].航空动力学报,2007,22(2):285-290. 被引量:16
  • 6Deb K.An efficient constraint handling method for genetic algorithms[J].Computer Methods in Applied Mechanics and Engineering,2000,186(2/3/4):311-338. 被引量:1
  • 7焦李成等著..免疫优化计算学习与识别[M].北京:科学出版社,2006:464.
  • 8Farmer J D,Packard N H,Perelson A S.The immune system,adaption,and machine learning[J].Physica D,1986,22(1/2/3):187-204. 被引量:1
  • 9Choi B G, Yang B S. Multi-objective optimum design of rotor-bearing systems with dynamic constraints using immune genetic algorithm[J]. Journal of Engineering for Gas Turbines and Power,2001,123(1):78-81. 被引量:1
  • 10Ayaho M,Hideaki N,Leopold K.Application of the improved immune algorithm to structural design support system[J].Journal of Structural Engineering,2004,130(1):108-119. 被引量:1

二级参考文献32

  • 1黄康,许志伟,董迎晖.改进的遗传算法及其在多目标优化设计中的应用[J].机械设计,2005,22(9):45-47. 被引量:5
  • 2GONG Maoguo,DU Haifeng,JIAO Licheng.Optimal approximation of linear systems by artificial immune response[J].Science in China(Series F),2006,49(1):63-79. 被引量:21
  • 3金东海,桂幸民.混合遗传算法的研究及其在压气机叶型优化设计中的应用[J].航空学报,2006,27(1):29-32. 被引量:17
  • 4K Deb, A Pratap, S Agarwal, T Meyarivan. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[ [ J]. IEEE Transactions on Evolutionary Computation,2002,6(2) : 182 - 197. 被引量:1
  • 5E Zitzler, L Thiele. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[ J]. IEEE Transactions on Evolutionary Computation, 1999,3 (4) : 257 - 271. 被引量:1
  • 6R H Shang, W P Ma. Immune clonal MO algorithm for ZDT problems[ A ]. Proceedings of 3rd International Conference on Fuzzy Systems and Knowledge Discovery ( FSKD' 06) [ C ]. Berlin: Springer-Verlag, 2006.100 - 109. 被引量:1
  • 7E Zitzler, L Thiele. A simple multi-membered evolution strategy to solve constraint optmization problems[J]. IEEE Transactions on Evolutionary Computation,2005,9(1) : 1 - 17. 被引量:1
  • 8Z X Cai, Y Wang. A multiobjective optimization based evolutionary algorithm for constrained optimization[ J]. IEEE Transaction on Evolutionary Computation,2006,10(6) :658 - 675. 被引量:1
  • 9L. C. Jiao,L. Wang. A novel genetic algorithm based on immunity[ J ]. IEEE Transaction on System, Man and Cybernetic, 2000,30(5) :552 - 561. 被引量:1
  • 10E Zitzler, K Deb, and L Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results [ J ]. Evolutionary Computation,2000,8(2) : 173 - 195. 被引量:1

共引文献72

同被引文献49

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部