期刊文献+

基于程序基因的恶意程序预测技术. 被引量:1

Malware prediction technique based on program gene
下载PDF
导出
摘要 随着互联网技术日益成熟,恶意程序呈现出爆发式增长趋势。面对无源码恶意性未知的可执行文件,当前主流恶意程序检测多采用基于相似性的特征检测,缺少对恶意性来源的分析。基于该现状,定义了程序基因概念,设计并实现了通用的程序基因提取方案,提出了基于程序基因的恶意程序预测方法,通过机器学习及深度学习技术,使预测系统具有良好的预测能力,其中深度学习模型准确率达到了99.3%,验证了程序基因理论在恶意程序分析领域的作用。 With the development of Internet technology, malicious programs have risen explosively. In the face of executable files without source, the current mainstream malware detection uses feature detection based on similarity, with lack of analysis of malicious sources. To resolve this status, the definition of program gene was raised, a gener-ic method of extracting program gene was designed, and a malicious program prediction method was proposed based on program gene. Utilizing machine learning and deep-learning algorithms, the forecasting system has good prediction ability, with the accuracy rate of 99.3% in the deep-learning model, which validates the role of program gene theory in the field of malicious program analysis.
作者 肖达 刘博寒 崔宝江 王晓晨 张索星 XIAO Da;LIU Bohan;CUI Baojiang;WANG Xiaochen;ZHANG Suoxing(School of Cyberspace Security,Beijing University of Post and Telecommunications,Beijing 100876,China;National Engineering Lab for Mobile Network Security,Beijing 100876,China)
出处 《网络与信息安全学报》 2018年第8期21-30,共10页 Chinese Journal of Network and Information Security
基金 国家自然科学基金资助项目(No.U1536122 No.61502536)~~
关键词 程序基因 动态分析 基本块 恶意程序预测 program gene dynamic analysis basic block malware prediction
  • 相关文献

参考文献8

二级参考文献17

  • 1Vyacheslav Zakorzhevsk. 卡巴斯基实验室每天检测到32.5万个最新恶意文件[Z/OL].[2014-12-03] . http://news.kaspersky.com.cn/news2014/12n/141203.htm. 被引量:1
  • 2Calvet J, Fernandez J M, Marion J Y. Aligot:Cryptographic function identification in obfuscated binary programs[C]//Proceedings of the 2012 ACM Conference on Computer and Communications Security. New York, USA:ACM, 2012:169-182. 被引量:1
  • 3Leder F, Martini P, Wichmann A. Finding and extracting crypto routines from malware[C]//Performance Computing and Communications Conference (IPCCC), 2009 IEEE 28th International. Piscataway, NJ:IEEE Press, 2009:394-401. 被引量:1
  • 4Cui B, Wang F, HaoY, et al. A taint based approach for automatic reverse engineering of gray-box file formats[J].Soft Computing, 2015:1-16. 被引量:1
  • 5Wang Z, Jiang X, Cui W, et al. ReFormat:Automatic reverse engineering of encrypted messages[C]//Proceedings of the 14th European Conference on Research in Computer Security. Berlin, GER:Springer-Verlag, 2008:200-215. 被引量:1
  • 6Lutz N. Towards revealing attackers intent by automatically decrypting network traffic[J]. Eth Zuerich, 2008(8):1-52. 被引量:1
  • 7Gr bert F, Willems C, Holz T. Automated identification of cryptographic primitives in binary programs[J].Lecture Notes in Computer Science, 2011,6961:41-60. 被引量:1
  • 8Caballero J, Yin H, Liang Z, et al. Polyglot:Automatic extraction of protocol message format using dynamic binary analysis[C]//Proceedings of the 14th ACM Conference on Computer and Communications Security. New York, USA:ACM, 2007:317-329. 被引量:1
  • 9Cui B, Wang F, Guo T, et al. A practical off-line taint analysis framework and its application in reverse engineering of file format[J].Computers & Security, 2015,51:1-15. 被引量:1
  • 10黎超. 基于切片的二进制代码可视化分析的研究[D]. 广州:广东工业大学, 2011. 被引量:1

共引文献34

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部