期刊文献+

基于免疫危险理论的手机恶意软件检测模型 被引量:1

Mobile Malware Detection Model Based on Immune Danger Theory
下载PDF
导出
摘要 为了提高智能手机恶意软件检测的自适应性和有效性,该文提出了基于免疫危险理论的手机恶意软件检测模型,该模型由4个部分组成:数据采集、危险信号生成、共刺激信号生成和预警部分,针对不同的恶意软件,采用微分方法表达危险信号,由自适应抗原提呈细胞产生相应的共刺激信号,最后对恶意软件产生预警.通过实验验证了该文模型的自适应性和有效性. In order to improve the adaptability and effectiveness of malware detection in mobile phones,a mobile malware detection model based on immune danger theory has been proposed in this paper.The model consists of four parts:data acquisition part,hazard signal generation part,co-stimulation signal generation part and warning part.Using differential method to express different dangerous signals,then the model produce corresponding co-stimulatory signals according to adaptive antigen presenting cells,and finally give early warning to malware.The experiment verifies the adaptability and effectiveness of this model.
作者 邹劲松 ZOU Jin-song(Putian Big Data Industrial College,Chongqing College of Water Resources and Electric Engineering,Yongchuan Chongqing 402160,China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2018年第11期78-85,共8页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 智能手机 免疫危险理论 抗原提呈细胞 恶意软件检测 mobile phone immune danger theory antigen presenting cells malware detection
  • 相关文献

参考文献7

二级参考文献67

  • 1刘小林,刘克胜.Windows Mobile手机恶意软件的原理分析及防护措施研究[J].网络安全技术与应用,2008(9):41-43. 被引量:3
  • 2杨欢,张玉清,胡予濮,刘奇旭.基于权限频繁模式挖掘算法的Android恶意应用检测方法[J].通信学报,2013,34(S1):106-115. 被引量:47
  • 3Mariantonietta La Polla, Febio Martinelli, Daniele Sgandurra. A survey on security for mobile devices [J]. IEEE Communications Surveys & Tutorials, 2013, 15 (1): 446-471. 被引量:1
  • 4Thomas Blosing, Leonid Batyuk, Aubrey Derrick Schmidt, et al. An Android application sandbox system for suspicious soft- ware detection [C]//Proceedings of the 5th International Conference on Malicious and Unwanted Software. USA: IEEE Computer Society Press, 2010: 55-62. 被引量:1
  • 5Asaf Shabtai, Robert Moskovitch, Yuval Elovici, et al. Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey [J]. Information Security TechnicalReport, 2009, 14 (1): 16-29. 被引量:1
  • 6Asaf Shabtai, Yuval Fledeh Uri Kanonov, et al. Google Android: A comprehensive security assessment [J]. IEEE Security and Privacy, 2010, 8 (2): 35-44. 被引量:1
  • 7Adrienne Porter Felt, Matthew Finifter, Erika Chin, et al. A survey of mobile malware in the wild [C]//Proceedings of the 1 st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices. New York: ACM Press, 2011: 3-14. 被引量:1
  • 8Zheng Min, Patti& P C Lee, John C S Lui. ADAM: An automarie and extensible platform to stress test android anti-virus systems [C] //Proceefflngs of the 9th International Conference on Detection of Imrusions and Malware and Vulnerability Assessment. Berlin Heidelberg.. Springer-Verlag, 2012: 82-101. 被引量:1
  • 9Zhou Yajin, Jiang Xuxian. Dissecting Android malware: Chara-cterization and evolution [C] //Proceedings of the IEEE Symposium on Security and Privacy. USA: IEEE Computer Society Press, 2012: 95-109. 被引量:1
  • 10Zhou Wu, Zhou Yajin, Jiang Xuxian, et al. Detecting repae- kaged srnartphone applications in third-party Android market- places [C] //Proceedings of the Second ACM Conference on Data and Application Security and Privacy. New York: ACM Press, 2012: 317-326. 被引量:1

共引文献38

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部