期刊文献+

基于Android系统的手机恶意软件检测模型 被引量:4

Mobile Malware Detection Model Based on Android System
下载PDF
导出
摘要 为提高手机应用软件的安全性,提出一种基于Android系统的手机恶意软件检测模型;模型利用数据挖掘的方法对恶意软件中的敏感API调用进行数据挖掘,进而得到恶意软件检测规则;针对检测规则在检测非恶意软件时,产生较高误报率的问题,设计了加权FP-growth关联规则挖掘算法,算法在数据挖掘的两个步骤中,对敏感API调用加权,利用支持度阈值去除一些出现次数频繁而权重小的规则,降低了非恶意软件的误报率;实验结果表明,模型对恶意软件检测率达到81.7%,非恶意软件的检错率降低到11.3%。 In order to improve the security of mobile application software based on Android system , a mobile malware detection model is proposed. The model manipulates sensitive API call via data mining to obtain detection rules. To reduce the false positive rate when the rule is used to detect the non malware, a weighted FP--growth association rule mining algorithm is proposed. Based on weighting the sensitive API call, we employ a support threshold to eliminate the rules which preserve small weight and occur with high frequency. The experiments show that the model achevied a detection rate of 81.7%for malwares, and reduced the false positive rate to 11.3%.
作者 马晋杨 徐蕾
出处 《计算机测量与控制》 2016年第1期156-158,共3页 Computer Measurement &Control
关键词 ANDROID系统 恶意软件 数据挖掘 敏感API FP-GROWTH算法 Android system malicious software data mining sensitive API FP-growth algorithm
  • 相关文献

参考文献8

  • 1Sangho Lee, Da Young Ju. Assessment of malicious applications u sing permissions and enhanced user interfaces on Android [A} . (ISI' 13) : Intelligence and Security lnformaties, 201S IEEE Inter- national Con~erence on. EC] ~ IEEE, 2013:270 - $270. 被引量:1
  • 2杨欢,张玉清,胡予濮,刘奇旭.基于权限频繁模式挖掘算法的Android恶意应用检测方法[J].通信学报,2013,34(S1):106-115. 被引量:47
  • 3Schmidt Aubrey-Derrick, Clausen Jan Hendrik, Cam-Tepe Ahmet, et al. Detection Symbian os malware through static function call analysis [A] . (Malware 2009): Proceedings o{ the 4th IEEE International Conference on Malicious and Unwanted Software [C] . Montreal, Canada, 2009:15 - $22. 被引量:1
  • 4Schmidt Aubrey-Derrick, Bye Rainer, Schmidt Hans-Gunther, et al. Static analysis of executables for collaborative malware detec- tion on Android [A] . (ICC' 09) : Proceedings of the 2009 IEEE International Conference on Communications [C]. Dresden, Ger- many, 2009: 631-$635. 被引量:1
  • 5Iker Burguea, Urko Zurutuza, Simin Nadjmtehrani. Crowdroid: Behavior-based malware detection system for Android [A] . (SPSM- ' 11) : Proceedings of the ACM CSS workshop on Securi- ty and Privacy in Smartphones and Mobile Devices [C]. Chicago. USA. 2011: 15-$26. 被引量:1
  • 6吕晓庆,邹仕洪.基于smali的Android软件敏感API调用日志模块嵌入系统[J].科技论文在线.2012. 被引量:1
  • 7Zhou Y J, Jiang X X. Dissecting Android malware: characterization and evolution [-A3. Proceedings of the 33rd IEEE Symposium on Security and Privacy EC3. Oakland, USA, 2012. 95 -S109. 被引量:1
  • 8Han J W, P J, Y Y W. Mining frequent patterns without candi- date generation: a frequent pattern tree approach EJ~. Data Min- ing and Knowledge Discovery , 2004, 8 (1): 53- $87. 被引量:1

二级参考文献2

共引文献46

同被引文献24

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部