期刊文献+

基于静态行为轨迹的异常特征检测技术 被引量:3

Anomaly feature detection technology based on static behavior trajectories
下载PDF
导出
摘要 针对现有程序静态异常特征检测中存在的对未知变种识别率低的问题,提出一种基于静态行为轨迹的特征提取与检测方法。特征建模阶段采用变长n-gram算法对样本的函数调用序列进行特征建模,并从中提取异常特征;检测阶段通过对函数调用序列的分片所生成的轨迹段与特征库中的序列段进行匹配,并将可信度加入判决值的计算中,与判决阈值作比较,以克服静态基于字节序列的特征码检测误报率较高的缺陷。实验表明,基于静态行为轨迹的异常特征检测技术具有较高的准确率和较低的误报率。 In order to solve existing problems of difficult to identify variants in static program anomaly detection, this paper proposed a method based on feature extracting and anomaly detecting of static behavior trajectory feature and built feature mo- del with sequence of API through variable-length n-gram algorithm, and extracted anomalies. In the detection phase, in order to overcome the high false alarm rate of static signature detection based on sequence of bytes, research matched the trajectory segment generated by fragments of API sequence to sequence segments in feature library, and compared decision threshold with decision value by adding credibility in calculation as well. Experimental results prove the anomalies detection based on static behavior trajectory to be possessed with high accuracy and low false alarm rate.
出处 《计算机应用研究》 CSCD 北大核心 2017年第8期2434-2438,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61472447)
关键词 静态行为轨迹 变长n-gram 轨迹段 判决阈值 static behavior trajectory variable-length n-gram trajectory segments threshold
  • 相关文献

参考文献9

二级参考文献50

  • 1李勇,左志宏.目标代码混淆技术综述[J].计算机技术与发展,2007,17(4):125-127. 被引量:10
  • 2Grimes R A.Malicious Mobile Code,Virus Protection for Windows[M].O'Reilly & Associates,2001:2-3. 被引量:1
  • 3Collberg C S,Thomborson C.Watermarking,Tamper-proofing and Obfuscation Tools for Software Protection[J].IEEE Transactions on Software Engineering,2002,28(8):735-746. 被引量:1
  • 4Cohen F.Computer Viruses[D].USA:University of Southern California,1985. 被引量:1
  • 5Wroblewski G.A General Method of Program Code Obfuscation[D].Wroclaw University,2002. 被引量:1
  • 6Christodorescu M, Jha S, Seshia S A, et al. Semantics-aware malwaredetection [ C ]//Security and Privacy, 2005 IEEE Symposium on.IEEE, 2005: 32-46. 被引量:1
  • 7http://en.wikipedia.org/wiki/Malware. 被引量:1
  • 8中国互联网协会.“恶意软件定义”细则[EB].2007. 被引量:1
  • 9https://www. hex-rays. com/products/ida/index, shtml. 被引量:1
  • 10Moser A,Kruegel C,Kirda E. Limits of static analysis for malware de-tection[ C]//Computer Security Applications Conference, 2007. AC-SAC 2007. Twenty-Third Annual. IEEE, 2007 : 421 -430. 被引量:1

共引文献98

同被引文献16

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部