期刊文献+

融入位置情景的移动用户行为挖掘方法研究 被引量:5

Research on Mobile User Behavior Mining Integrated with Location Scenarios
原文传递
导出
摘要 移动用户为具有特殊性,即与情景的关联性.在研究融入位置情景的移动用户行为特征.首先分析了影响移动用户行为模式的情景集合,并通过调查问卷分析,提取出主要的情景因素,包括用户(user)、设备(device)、地点(location)、时间(time)和服务信息(service).然后根据这些情景属性对移动用户行为模式进行建模,并提出了一种基于网络结构的移动用户行为模式挖掘方法.根据兴趣度的大小将移动用户行为模式划分为三个等级,即低兴趣度、中兴趣度和高兴趣度,保留兴趣度较高的行为模式,剔除兴趣度低的行为模式,然后利用数据挖掘方法挖掘出兴趣度较大移动用户行为模式的关联规则.利用这些规则对用户进行一定的推荐服务,以便为移动用户提供更优质的服务. the behavior of mobile users is special, that is, relevance to scenarios, the purpose of this paper is to study the behavior characteristics of mobile users integrated with location scenarios. Firstly, it analyzes the scenarios that affect the behavior patterns of mobile users, and extracts the main scenarios factors through the questionnaire analysis, including the user, device, location, time and service. Then, the behavior model is modeled according to these scene attributes, and a mobile user behavior pattern mining method based on network structure is proposed. According to the degree of interestingness, the behavior patterns of mobile users are divided into three grades, namely, low interestingness, middle interestingness and high interestingness. Hold the behavior patterns with high interestingness, exclude the behavior patterns with low interestingness, and then use data mining method to mine the association rules in the behavior patterns with high interestingness. These rules can be used to recommend the service to the user, in order to provide better service for mobile users.
作者 高永梅 鲍福光 GAO Yong-mei;BAO Fu-guang(In Formation Engineering College,Hangzhou Vocational & Technical College,Hangzhou 310018,China;School of Management and E-Business,Zhejiang Gongshang University,Hangzhou 310018,China)
出处 《数学的实践与认识》 北大核心 2018年第16期72-84,共13页 Mathematics in Practice and Theory
基金 2016年浙江省教育厅一般科研项目(Y201635225,项目名称:基于位置服务情景的移动用户行为建模及挖掘方法研究)
关键词 移动用户 行为模式 位置情景 关联挖掘 mobile user behavior modeling location scenarios association mining
  • 相关文献

参考文献8

二级参考文献53

  • 1阮幼林,李庆华,刘干.分布环境中的并行频繁模式挖掘算法[J].计算机工程与应用,2005,41(25):1-3. 被引量:3
  • 2刘志昆,王卫平.基于精确序列模式的网页个性化推荐[J].计算机系统应用,2006,15(5):32-35. 被引量:2
  • 3ANAGNOSTOPOULOSC,TSOUNISA,HADJIEFTHYMIADESS.Context awareness in mobile computing environments A survey[J].Wireless Personal Communications,2007,42(3):445-464. 被引量:1
  • 4Abowd G D, Dey A K, Brown P J, Davies N, Smith M,Steggles P. Towards a better understanding of context and context-awareness. In: Gellersen H Wed. Handheld and Ubiquitous Computing. Berlin: Springer, 1999. 304-307. 被引量:1
  • 5Castro P, Muntz R. Managing context data for smart spaces.IEEE Personal Communications, 2000, 7(5): 44-46. 被引量:1
  • 6Weiser M. The computer for the twenty-first century. Scientific American, 1991, 265(3): 94-104. 被引量:1
  • 7Dertouzos M. The future of computing. Scientific American,1999, 282(3): 52-63. 被引量:1
  • 8Norman D. The Invisible Computer. Cambridge, Mass: MIT Press, 1999. 被引量:1
  • 9Garlan D, Siewiorek D P, Smailagic A, Steenkiste P. Project aura: Toward distraction-free pervasive computing. IEEE Pervasive Computing, 2002, 1(4-6): 22-31. 被引量:1
  • 10Salz P. The disappearing computer. Time Europe, 2000, 155(8) : 1-8. 被引量:1

共引文献267

同被引文献65

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部