期刊文献+

面向领域的高质量微博用户发现 被引量:1

Domain Specific High-quality Microblogging User Detection
下载PDF
导出
摘要 在微博系统中,寻找高质量微博用户进行关注是获取高质量信息的前提。该文研究高质量微博用户发现问题,即给定领域词查询,系统根据用户质量返回相关用户排序列表。将该问题分解成两个子问题:一是领域相关用户的检索问题,二是微博用户排序问题。针对用户检索问题,提出了基于用户标签的用户表示方法以及基于维基百科的查询—用户相似度匹配方法,该方法作为ESA(explicit semantic analysis)的一个扩展应用,结果具有良好的可解释性,实验表明基于维基百科的效果要优于基于其他资源的检索效果。针对用户排序问题,提出了基于图的迭代排序方法 UBRank,在计算用户质量时同时考虑用户发布消息的数量和消息的权威度,并且只选择含URL的消息来构建图,实验验证了该方法的高效性和优越性。 In nowadays microblogging systems such as Twitter or Weibo,searching high quality users to follow is essential for acquiring information.This paper is focuses on the task of high quality user identification,i.e.,given a domain query,return a user list according to user quality.We divide the task into two sub-problems:the user search and the user ranking.As for the user search,we represent users according to their tags and propose a similaritybased retrieval approach using the Chinese Wikipedia,which is essentially an extension of the current ESA(explicit semantic analysis)method.As for the user ranking,we propose a graph-based ranking method called UBRank,which considers both the quantity and the quality of the published posts to measure the user importance.Experiments indicate that using Chinese Wikipedia is better than other resources such as HowNet,and validate the efficiency and superiority of the ranking method.
作者 叶永君 李鹏 周美林 万仪方 王斌 YE Yongjun;LI Peng;ZHOU Meilin;WAN Yifang;WANG Bin(Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《中文信息学报》 CSCD 北大核心 2018年第7期109-115,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金(61402466) 国家高技术研究发展计划(863)(2015AA016005)
关键词 用户质量测量 用户行为模型 图排序算法 user quality measure user behavior model graph based ranking
  • 相关文献

参考文献2

二级参考文献27

  • 1Zhou T, Ma H, Lyu , M. , King, 1. UserRec: A User Recommendation Framework in Social Tagging Sys?tems[CJ/ /Proceedings of the 24th AAAI Conference on Artificial Intelligence, 2010: 1486-1491. 被引量:1
  • 2Jilin Chen, Werner Geyer, Casey Dugan. Make new friends, but keep the old: recommending people on so?cial networking sites[CJI /Proceedings of CHIll: Proceedings of the 27th international conference on hu?man factors in computing systems ACM New York, 2009. 被引量:1
  • 3Hiroyuki Koga , Tadahiro Taniguchi. Developing a User Recommendation Engine on Twitter Using Esti?mated Latent Topics], CJ/ /Proceedings of HCI (1) 2011: 461-470. 被引量:1
  • 4Geyer W, Dugan C, Millen D, et al. Recommending topics for self-descriptions in online user profiles[CJ/ / Proceedings of RecSys08, 2008: 59-66. 被引量:1
  • 5Sinha R, Swearingen K. Comparing recommendations made by online systems and friends[CJ/ /Proceedings of DELOS- NSF Workshop on Personalization and Rec?ommender Systems in Digital Libraries. 2001. 被引量:1
  • 6Guy I, Zwerdling N, Carmel D, et al. Personalized recommendation of social software items based on so?cial relations[CJ/ /Proceedings of RecSys , 2009: 53- 60. 被引量:1
  • 7TY Liu. Learning to Rank for Information Retrieval[J]. Foundations and Trends in Information Retrieval, 2009. 被引量:1
  • 8K Dindia and D Canary. Definitions and Theoretical Perspectives on Maintaining Relationships.Journal of Social and Personal Relationships[J], 1993, 10 (2) : 163-173. 被引量:1
  • 9Malone T, Grant K, Turbak F, et al. Intelligent in?formation sharing systems]]]. Communications of the ACM , 1987, 30(5): 390-402. 被引量:1
  • 10J Hu, B Wang, Y Liu. Personalized Tag Recommen- dation Using Social Contacts[CJ/ /Proceedings of SRS VVorkshops. 2011. 被引量:1

共引文献25

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部