期刊文献+

一种微博热点事件子话题的可视分析方法 被引量:3

A visualization method for analyzing sub-topics of hot events in microblogs
下载PDF
导出
摘要 如何从海量微博数据中挖掘出有意义的信息,理解热点事件发生的全过程,并发现其中的拐点事件,显得越来越重要.传统的单一依靠词频的方法缺乏对子话题的抽象描述,因此存在一定的局限性.为此结合主题提取和词频统计的技术,提出了一种交互式可视分析方法,对热点事件子话题的演化过程进行不同粒度的展示;再通过比较相邻时间区间子话题词分布的变化,发现关于某些子话题的拐点事件,进而利用词项共现图在微博原文中找到具体信息.这里,用户可以在交互过程中发现最优的参数配置,从而更加有效地分析拐点事件,并理解热点事件发生的全过程.在真实的数据集上进行了实验,并与传统的基于词频的方法和基于主题变化趋势的方法做比较,结果验证了该方法的有效性. Abundant information can be gained from massive microblog data. Microblogs record the whole process of hot events and people's reactions. It is increasingly important to obtain meaningful and useful information from microblogs, shape a clear picture of the evolution process of hot event and discover some turning points in the hot event. Existing solutions are mainly based on word frequency, which lacks abstract description to sub-topics. This paper proposes a new interactive visualization method that combines the techniques of topic extraction and word frequency statistics, to visualize the evolution process of sub-topics in different granularities. By observing the variation of word distributions in sub-topics for adjacent time intervals, turning-point events related to some sub-topics can be discovered, and then corresponding contents in the microblog can be tracked with the aid of word co-occurrence graphs. During the interactive process, the parameters in the method can be adjusted by users and optimal values can be eventually determined for a better understanding of turning-point events as well as the evolution process of the hot event. Experiments are conducted on real Sina Weibo datasets, and the results demonstrate that this method is more effective than existing ones based on word frequency and topic trends separately.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2017年第1期48-56,共9页 JUSTC
基金 国家重点基础研究发展计划(973)课题(2013CB329305) 国家自然科学基金青年基金(61402452)资助
关键词 子事件检测 微博 可视分析 主题模型 Sub-topic detection microblog topic model visualization
  • 相关文献

参考文献5

二级参考文献86

  • 1徐晓日.网络舆情事件的应急处理研究[J].华北电力大学学报(社会科学版),2007(1):89-93. 被引量:141
  • 2石晶,戴国忠.基于PLSA模型的文本分割[J].计算机研究与发展,2007,44(2):242-248. 被引量:25
  • 3Allan J. Topic Detection and Tracking: Event-based Information Organization[M]. [S.l.]: KluwerAcademic Publishers, 2002: 1-16. 被引量:1
  • 4Ault T G, Yang Yiming. Information Filtering in TREC-9 and TDT-3: A Comparative Analysis[J]. Information Retrieval, 2002, 5(2/3): 159-187. 被引量:1
  • 5Wei Chih-Ping, Chang Yu-Hsiu. Discovering Event Evolution Patterns from Document Sequences[J]. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2007, 32(2): 12-13. 被引量:1
  • 6Kwak H, Lee C, Park H, et al. What is Twitter, a Social Net- work or a News Media? I-A]//WWW' 10 Proceedings of the 19th International Conference on World Wide Web, 2010[C]. Raleigh, North Carolina, USA : ACM, 2010 : 591 -600. 被引量:1
  • 7Liu Zi-tao, Yu Wen-chao, Chen Wei, et al. Short Text Feature Selection for Miero-blog Mining [A]//Computational Intelli- gence and Software Engineering, 2010[C]. Wuhan, China: Wu- han University, 2010: 1-4. 被引量:1
  • 8Pak A,Paxoubek Pa Twitter as a Corpus for Sentiment Analy- sis and Opinion Mining[A]//Proceedings of LREC, 2010[C]. Valletta, Malta: European Language Resources Association (ELRA). 2010:1320-1326. 被引量:1
  • 9Allan J,Carbonell JG, et al. Topic Detection and Tracking Pilot Study Final Report[A]//Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop, 1998 [C]. 1998:194-218. 被引量:1
  • 10Sakaki Ti, Okazaki M, Matsuo Y. Earthquake Shakes Twittt User..Real-time Event Detection by Social Sensors [ A] // Pr1 ceedings of the 19th International Conference on World Wi1 Web, 2010[C]. Raleigh, North Carolina: ACM Press, 2010: 85] 861. 被引量:1

共引文献131

同被引文献26

引证文献3

二级引证文献11

  • 1王占刚,庄大方,王勇.历史事件时空过程描述及其可视化研究[J].计算机工程,2014,40(11):50-55. 被引量:10
  • 2秦兵,赵妍妍,丁效,刘挺,翟国富.Event Type Recognition Based on Trigger Expansion[J].Tsinghua Science and Technology,2010,15(3):251-258. 被引量:7
  • 3尔菲.盗版混不下去了[J].计算机应用文摘,2014(16):10-13.
  • 4刘军,张洪全,李学良.一种功能分区神经网络的结构及在复杂系统建模中的应用[J].青岛化工学院学报(自然科学版),1996,17(1):82-84. 被引量:6
  • 5周建成,宋曦轮.基于关系事件的网络复杂攻击检测技术研究[J].科技导报,2005,23(12):44-46. 被引量:3
  • 6麦迪娜,M.N.Achasovs,O.Albayrak,D.J.Ambrose,安芬芬,安琪,白景芝,班勇,J.Becker,J.V.Bennett,N.Berger,M.Bertani,边渐鸣,E.Boger,O.Bondarenko,I.Boyko,R.A.Briere,V.Bytev,蔡啸,O.Cakir,A.Calcaterra,曹国富,S.A.Cetin,常劲帆,G.Chelkov,陈刚,陈和生,陈江川,陈玛丽,陈申见,谌勋,陈元柏,程和平,初元萍,D.Cronin-Hennessy,代洪亮,代建平,D.Dedovich,邓子艳,A.Denig,I.Denysenko,M.Destefanis,丁伟民,丁勇,董燎原,董明义,杜书先,方建,房双世,L.Fava,封常青,R.B.Ferroli,P.Friedel,傅成栋,高原宁,耿聪,K.Goetzen,龚文煊,W.Gradl,M.Greco,顾旻皓,顾运厅,管颖慧,郭爱强,郭立波,郭暾,郭玉萍,韩艳良,F.A.Harris,何康林,何苗,何振亚,T.Held,衡月昆,侯治龙,胡琛,胡海明,胡继峰,胡涛,黄光明,黄光顺,黄金书,黄亮,黄性涛,黄勇,黄燕萍,T.Hussain,姬长胜,纪全,姬清平,季晓斌,季筱璐,姜丽丽,江晓山,焦健斌,焦铮,金大鹏,金山,景繁凡,N.Kalantar-Nayestanaki,M.Kavatsyuk,B.Kopf,M.Kornicer,W.Kuehn,赖蔚,J.S.Lange,M.Leyhe,李春花,李澄,李翠,李德民,李飞,李刚,李海波,李家才,李康,李蕾,李秋菊,李绍莉,李卫东,李卫国,李晓玲,李小男,李学潜,李秀荣,李志兵,梁昊,梁勇飞,梁羽铁,廖广瑞,廖小涛,D.Lin(Lin),刘北江,C.L.Liu,刘春秀,刘福虎,刘芳,刘峰,刘虎,刘宏邦,刘汇慧,刘怀民,刘红薇,刘觉平,刘凯,刘魁勇,刘佩莲,刘倩,刘树彬,刘翔,刘玉斌,刘振安,刘志强,刘智青,H.Loehner,鲁公儒,�.Determination of the number of ψ' events at BES Ⅲ[J].Chinese Physics C,2013,37(6):1-11. 被引量:1
  • 7王明文,付翠琴,徐凡,洪欢.基于词项共现关系图模型的中文观点句识别研究[J].中文信息学报,2015,29(6):185-192. 被引量:5
  • 8K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff.MONTE CARLO NEUTRINO EVENT GENERATORS[J].Chinese Physics C,2014,38(9):498-500.
  • 9陈宝权,程章林.大数据与智慧城市[J].大数据,2015,1(1):61-70. 被引量:3
  • 10孙基男,黄雨,黄舒志,张世琨,袁崇义.一种基于Petri网的RFID事件检测的形式化方法[J].计算机研究与发展,2012,49(11):2334-2343. 被引量:4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部