期刊文献+

基于话题三层结构模型的话题演化分析算法 被引量:10

Topic Three Layer Model Based Topic Evolution Analysis Algorithm
下载PDF
导出
摘要 在话题追踪研究领域,话题随着时间不断发展变化。目前的话题追踪方法无法对话题的发展演化进行全局的把握。针对该问题,提出基于相似度计算的话题演化分析方法。该方法采用时间片划分的思想,通过子话题间的相似度计算得到话题演化的具体过程及细节。实验结果表明,该方法能有效地反映话题的演化历程。 In the area of topic tracking, topic develops with time, traditional topic tracking method can tracking the relevance story efficiently. It can not know relationship between events occurred during the develop of topic. It can neither know the whole history of the topic tracking. This paper proposes a new method based on the calculation of the subtopic similarity. The method concern the time characteristic of the topic tracking and use it to manipulate the information. Experiment result shows that the method analysis the evolution history of the topic efficiently.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第23期71-72,75,共3页 Computer Engineering
关键词 话题追踪 时间片 子话题 话题演化 文本相似度 topic tracking time slice subtopic topic evolution text similarity
  • 相关文献

参考文献4

  • 1Allan J. Topic Detection and Tracking: Event-based Information Organization[M]. [S.l.]: KluwerAcademic Publishers, 2002: 1-16. 被引量:1
  • 2Ault T G, Yang Yiming. Information Filtering in TREC-9 and TDT-3: A Comparative Analysis[J]. Information Retrieval, 2002, 5(2/3): 159-187. 被引量:1
  • 3Wei Chih-Ping, Chang Yu-Hsiu. Discovering Event Evolution Patterns from Document Sequences[J]. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2007, 32(2): 12-13. 被引量:1
  • 4姚清耘,刘功申,李翔.基于向量空间模型的文本聚类算法[J].计算机工程,2008,34(18):39-41. 被引量:50

二级参考文献7

  • 1王永成.中文信息处理技术及其基础[M].上海:上海交通大学出版社,1990.. 被引量:6
  • 2Hatzivassiloglou V. Simfinder: A Flexible Clustering Tool for Summarization[C]//Proc of NAACL Workshop on Automatic Summarization, Association for Computational Linguistics. Pittsburgh, USA: [s. n.]. 2001: 4-14. 被引量:1
  • 3Fang Y C. Parthasarathy S, Schwartz F. Using Clustering to Boost Text Classification[C]//Proc. of the IEEE ICDM Workshop on Text Mining. Maebashi City, Japan: [s. n.], 2002: 1-9. 被引量:1
  • 4Cutting D, Karger D. Scatter/Gather: A Cluster Based Approach to Browsing Large Document Collection[C]//Proc. of SIGIR'92. New York, USA: ACM Press, 1992:318-329. 被引量:1
  • 5Salton G, Wong A, Yang C S. A Vector Space Model for Automatic Indexing[J]. Communications of ACM, 1995, 18( 11 ): 613-620. 被引量:1
  • 6Ackennan M, Billsus D, Gaffney S. Learning Probabilistic User Profiles[J]. AI Magazine, 1997, 18(2): 47-56. 被引量:1
  • 7Cheeseman P, Stutz J. Bayesian Classification(AutoClass): Theory and Results[C]//Proc. of Advances in Knowledge Discovery and Data Mining. Menlo Park, CA, USA: American Association for Artificial Intelligence, 1996: 153-180. 被引量:1

共引文献49

同被引文献61

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部