期刊文献+

改进的多因子协同过滤推荐算法 被引量:2

An improved multi-factor collaborative filtering recommendation algorithm
下载PDF
导出
摘要 和传统的协同过滤相比,基于标签的推荐算法更能有效地挖掘用户的偏好模型,但传统的基于标签的推荐算法未考虑到标签的时效性,并不能充分捕捉用户兴趣的动态变化。因此,文中结合标签的时间因子,提出一种改进的多因子协同过滤推荐算法。在Movie Lens数据集上进行实验,结果表明,该算法在准确率、召回率上均有所提升。 Compared with the traditional collaborative filtering recommendation algorithm,the tag based recommendation algorithm is more effective in mining users ' preference model. But tag based recommendation algorithm cannot fully capture the dynamic changes of users ' interest,for that it considers nothing about tags ' timeliness. Therefore, this paper proposes an improved multi-factor collaborative filtering recommendation algorithm by combining the time factor of tags. The experiments are carried out on the data set Movie Lens,the results show that the algorithm improved the accuracy and recall rate.
作者 夏兵兵 王卫东 XIA Bing-bing;WANG Wei-dong(School of Computer Science,Jiangsu University of Science and Technology,Zhenjiang 212001,Jiangsu Prvince,China)
出处 《信息技术》 2018年第6期121-123,127,共4页 Information Technology
关键词 标签 时间因子 协同过滤 偏好模型 tag time factor collaborative filtering preference model
  • 相关文献

参考文献8

二级参考文献71

  • 1踏莎而行.小TAG有大智慧[J].电子商务世界,2006(5):84-85. 被引量:7
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3Graf S. Adaptivity in learning management systems focusing on learning style [ D ]. Vienna:University of Vienna ,2007. 被引量:1
  • 4Chen Chih-Ming. Intelligent web-based learning system with personalized learning path guidance [ J ]. Computer & Educa- tion,2008,51 (2) :787-814. 被引量:1
  • 5Yang Y J, Wu Chuni. An attribute-based ant colony system for adaptive learning object recommendation [ J ]. Expert Systems with Applications,2009,36(2) :3034-3047. 被引量:1
  • 6Klasnja- Milicevic A, Vesin B, Ivanovic M, et al. E -learning personalization based on hybrid recommendation strategy and learning style identification [ J 1. Computer & Education ,2011, 56(3) :885-899. 被引量:1
  • 7Marsh H W, Cooper T L. Prior subject interest, students' eval- uations, and instructional effectiveness [ J ]. Multivariate Be- havioral Research,1981,16 ( 1 ) :88-104. 被引量:1
  • 8Sarwar B, Karypis G, Konstan J, et al. Item-based collabora- tive filtering recommendation algorithms [ C ]//Proceedings of the lOth international conference on World Wide Web.New York ACM Press,2001:285-295. 被引量:1
  • 9Kolb D A. Learning style inventory technical manual [ M ]. Boston: McBer & Co, 1974. 被引量:1
  • 10Larkin-Hein T, Bundy D D. Research on learning style : ap- plication in the physics and engineering classroom[ J]. IEEE Transactions on Education,2001,44(3 ) :276-281. 被引量:1

共引文献59

同被引文献22

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部