期刊文献+

基于海量数据和Web挖掘的个性化推荐系统研究

Survey of Personalized Recommendation System Based on Massive Data and Web Mining
下载PDF
导出
摘要 推荐系统是学术界和工业界研究热门的课题,能有效解决互联网海量数据中"信息过载".首先介绍个性化推荐技术的发展、应用和相关问题,重点分析多种经典的推荐算法及其特点,并给出推荐系统的性能评价方法与指标,最后对个性化推荐的未来发展做出展望。 Recommendation system is a hot topic in industry and academic fields, which can effectively solve information-overload in massive data on Internet. This paper introduces the development and applications of personalized recommendation technology,including several key problems. The different types of classical recommendation algorithms are analyzed in detail. It also lists the evaluation methods and criterions. In the end the future development of personalized recommendation are prospected.
出处 《山西大同大学学报(自然科学版)》 2015年第3期11-17,共7页 Journal of Shanxi Datong University(Natural Science Edition)
基金 山西省基础研究青年科技研究基金项目[2012021015] 长治学院校级科研项目[201418]
关键词 个性化推荐 海量数据 WEB挖掘 推荐算法 personalized recommendation massive data web mining recommendation algorithm
  • 相关文献

参考文献18

二级参考文献158

  • 1张锋,常会友.基于分布式数据的隐私保持协同过滤推荐研究[J].计算机学报,2006,29(8):1487-1495. 被引量:17
  • 2游文,叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,16(9):70-72. 被引量:54
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 4陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 5Shardanand U,Maes P.Social information filtering:algorithms for automating "word of mouth"[C]//Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems.New York:ACM Press,1995,210-217. 被引量:1
  • 6Herlocker J,Konstan J A,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53. 被引量:1
  • 7Geyer-Schulz A,Hahsler M,Wien W,et al.Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory[DB/OL].[2008-10-12].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.911. 被引量:1
  • 8Dahlen B J,Konstan J A,Herlocker J L,et al.Jumpstarting movielens:user benefits of starting a collaborative filtering system with "dead data"[DB/OL].[2008-10-12].http://www.bibsonomy.org/bibtex/24433e6aa3be2cdad117bfb5fd7a757a1/bsmyth. 被引量:1
  • 9Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[DB/OL].[2008-10-12].http://www.cs.pitt.edu/-mrotaru/comp/rs/Breese%20UAI%201998.pdf. 被引量:1
  • 10Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framework for performing collaborative filtering[C]// Hearst M A,Gey F F,Tong R.Proceedings of the 22nd International Conference on Research and Development in Information Retrieval (SIGIR'99) (Aug).New York:ACM Press,1999:230-237. 被引量:1

共引文献370

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部